
Errata for Higher categories and Homotopical Algebra
(September 15, 2023)

The online version of the text is systematically corrected (without changing the
numbering of theorems). Here is the list of corrections so far, with references
to the printed book.

• Page 10, Example 1.3.2. Δ𝑛 should be [𝑛].
• Page 45, end of the proof of Proposition 2.3.11. The map from 𝑇 ′1 to 𝑌 ′ is not
( 𝑓1, 𝑝0) but rather ( 𝑓1, 𝑦𝑝0).
• Page 69, second part of the proof of Proposition 2.5.3. The map 𝑝 : 𝑋 → 𝑌

should be 𝑓 : 𝑋 → 𝑌 .
• Page 71, proof of Proposition 2.5.7. The map ℎ(𝜕1⊗1𝑋) should be ℎ(𝜕1⊗1𝑌 ).
• Page 78, proof of Proposition 3.1.13. The case where 𝐹𝑖 ∩ 𝐹𝑗 is empty does
not occur for 𝑛 ≠ 1 (and that is an essential part of the proof).
• Page 160, Theorem 4.4.14. There is a typo: a morphism between fibrants
objects over 𝐶 is a fibration if and only if it is a left fibration.
• Page 169, Paragraph 4.4.35. In Diagram (4.4.35.1), we should label the map
𝐴′ → 𝐴/𝑏1 as 𝑢 : 𝐴′ → 𝐴/𝑏1. At the bottom of the page, just after Diagram
(4.4.35.4), we should correct the text as follows.

In particular, there is a canonical monomorphism

(4.4.35.5) 𝑎′\𝐴𝑏1 → (𝑣, 𝑎0)\𝐴𝑏1

which can be identified with the inclusion

𝐴𝑏1 ×(𝑣,𝑏0 )\(𝐴/𝑏1 ) (𝑣, 𝑎0)\(𝐴/𝑏1) ⊂ 𝐴𝑏1 ×𝐴/𝑏1 (𝑣, 𝑎0)\(𝐴/𝑏1) .

In the case where 𝑝 is a an inner fibration between∞-categories, one can show
that the map (4.4.35.5) is an equivalence of ∞-categories as follows, up to
equivalences of ∞-categories (due to Proposition 4.2.9, it corresponds to the
identification

𝐴𝑏1 ×(𝑣,𝑏0 )\\(𝐴//𝑏1 ) (𝑣, 𝑎0)\\(𝐴//𝑏1) = 𝐴𝑏1 ×𝐴//𝑏1 (𝑣, 𝑎0)\\(𝐴//𝑏1) .

• Page 170, in the proof of Theorem 4.4.36, the sentence "The isomorphism
(4.4.35.5) thus proves that conditions (ii) and (iii) are equivalent." should be
replaced by "The equivalence (4.4.35.5) thus proves that conditions (ii) and (iii)
are equivalent.".
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• Page 196–197, Definition 5.2.3 is slightly flawed and does not fit perfectly
with the description of the universe used subsequently in the book. Here is the
fully correct formulation.

Definition 5.2.3 We fix a Grothendieck universe U. A set is U-small is it
belongs to U. One defines ΔΔΔ so that its set of arrows is U-small. We define the
simplicial set𝑈 of morphisms of simplicial sets with U-small fibres as follows.
An element of𝑈𝑛 is a map 𝑝 : 𝑋 → Δ𝑛, such that 𝑋 takes its values in U-small
sets, together with a choice, for any map 𝑓 : Δ𝑚 → Δ𝑛, of a Cartesian square
of U-small simplicial sets of the following form.

𝑓 ∗ (𝑋) 𝑋

Δ𝑚 Δ𝑛

𝑓

𝑓 ∗ 𝑝 𝑝

𝑓

with the constraint that 1∗
Δ𝑛
(𝑋) = 𝑋 and 1̃Δ𝑛 = 1𝑋.

One defines the simplicial set S of left fibrations with specifiedU-small fibers
as the sub-object of𝑈 whose elements correspond to left fibrations of codomain
Δ𝑛 with specified pull-back squares of U-small simplicial sets as above.

One checks immediately that Sop can be interpreted as the simplicial set of
right fibrations with specified U-small fibers, i.e., is canonically isomorphic to
the sub-object of 𝑈 whose elements are the right fibrations of codomain Δ𝑛

with suitably specified pull-back squares.
There is a pointed version of𝑈, which we denote by𝑈•. A map Δ𝑛 → 𝑈• is

a map 𝑝 : 𝑋 → Δ𝑛 with 𝑋 a presheaf of U-small sets, equipped with pull-backs
as above, together with a section 𝑠 : Δ𝑛 → 𝑋 of 𝑝. Forgetting the section 𝑠
defines a morphism of simplicial sets

𝜋 : 𝑈• → 𝑈 .

One defines similarly
𝑝univ : S• → S

as the pull-back of 𝜋 : 𝑈• → 𝑈 along the inclusion S ⊂ 𝑈.

• Page 200, in order to avoid set–theoretic problems, we should add the follow-
ing sentences right at the begining of the proof of Lemma 5.2.12.

There is a simplicial subset K ⊂ S such that a map 𝐹 : 𝐴→ S factors through
K if and only if 𝐹 classifies a Kan fibration. We want to prove that K is a Kan
complex. That means that it is sufficient to prove this lemma in the case where
the anodyne extension 𝐾 → 𝐿 is a horn inclusion. Therefore, we may assume,
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without loss of generality, that 𝐿 itself is U-small.

• Page 203, Remark 5.2.15 is flawed and should be replaced as follows.
Remark 5.2.15 An inspection of the proof of Theorems 5.2.10 and 5.2.14
shows that a monomorphism of small simplicial sets 𝑖 : 𝐴 → 𝐵 has the left
lifting property with respect to S → Δ0 (for all universes U) whenever the
induced functor L𝑖! : RFib(𝐴) → RFib(𝐵) is fully faithful.
• Pages 207–208, Proposition 5.3.8 and its proof should be reformulated as
follows (this proposition is only used in the proof of 5.3.11, and this does not
affect the latter).

Proposition 5.3.8 If the morphisms 𝑝 : 𝑋 → 𝐴 and 𝑞 : 𝑌 → 𝑋 are left
fibrations, then the morphism 𝜋𝑋,𝑌 : Hom𝐴(𝑋,𝑌 ) → 𝐴 is a fibration of the
Joyal model category structure.

Proof The functor (𝑌, 𝑞) ↦→ (Hom𝐴(𝑋,𝑌 ), 𝜋𝑋,𝑌 ) is right adjoint to the func-
tor (−)×𝐴𝑋 . The latter preserves monomorphisms, and, by virtue of Proposition
5.3.5, it also preserves the class of weak equivalences of the model category
structure on sSet/𝐴 induced by the Joyal model category structure. In particular,
we have here a Quillen pair. □

• Page 221, in the proof of fullness, there is a size issue which must be address.
The following paragraph should be inserted.

Let us prove the property of fullness. Let 𝑝 : 𝑋 → 𝐴 and 𝑞 : 𝑌 → 𝐴 be
left fibrations classified by 𝐹 and 𝐺, respectively, and let 𝜓 : 𝑋 → 𝑌 be a
morphism of simplicial sets over 𝐴. By virtue of Proposition 5.4.3, the map 𝜓
corresponds to a left fibration 𝜋 : 𝑊 → Δ1 × 𝐴, such that the fibers of 𝜋 at 0
and 1 are homotopic over 𝐴 to 𝑋 and 𝑌 , respectively. We claim, that, since 𝑋
and 𝑌 have U-small fibers, we may choose 𝑊 with the same property. This is
proved as follows. We observe that this is obvious whenever 𝐴 itself is U-small
(since the model structures involved in Proposition 5.4.3 may be restricted to
U-small objects). In general, we may assume that 𝜋 is a minimal left fibration.
We observe furthermore that Δ1 × 𝐴 is a filtered union of subobjects of the
form Δ1 × 𝐵, where 𝐵 runs over U-small subobjects of 𝐴. It is thus sufficient
to prove that the domain of the pullback of 𝜋 over such Δ1 × 𝐵 is U-small. By
minimality, it is sufficient to prove that such a pullback is fiberwise equivalent
to a left fibration with U-small fibers, which we already know. Using Lemma
5.4.4, one can find a morphism Δ1 → Hom(𝐴, S) classifying the left fibration
𝜋 : 𝑊 → Δ1 × 𝐴, out of which [...]
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• Page 228, at the end of the proof of Theorem 5.5.7, a false computation is used
to conclude that the co-unit map 𝛿!𝛿∗ (𝑋) → 𝑋 is a weak equivalence. Between
the sentences “Similarly, the class of bisimplicial sets 𝑋 such that the co-unit
map 𝛿!𝛿∗ (𝑋) → 𝑋 is a weak equivalence is saturated by monomorphisms.”
and “In other words, the adjoint pair (𝛿!, 𝛿∗) is a Quillen equivalence.” the text
should be replaced by the following words:

In the case where 𝑋 = Δ𝑚 ⊠ Δ𝑛 is representable, we have 𝛿∗ (𝑋) = Δ𝑚 × Δ𝑛

weakly contractible, and therefore, since 𝛿! preserves the terminal object as well
as weak equivalences, by virtue of Corollary 1.3.10, to prove that the co-unit
map 𝛿!𝛿∗ (𝑋) → 𝑋 is a weak equivalence for all 𝑋 , we only have to check that
Δ𝑚 × Δ𝑛 is weakly contractible for all 𝑚 and 𝑛, which is an easy exercise.

• Page 232, there are a couple of typos at the end of the proof of Lemma 5.5.16:
some 𝑇’s have been replaced by 𝑌 ’s. One should read:
Therefore, the map 𝑋𝐾 → 𝑇𝐾 is a trivial fibration for all 𝐾 . This implies
that the map 𝑋𝐿 → 𝑋𝐾 ×𝑇𝐾 𝑇𝐿 is a trivial fibration for any monomorphism
𝐾 → 𝐿. Therefore, the map 𝑞 : 𝑋 → 𝑇 is a trivial fibration of bisimplicial sets,
and, since 𝑖 is a monomorphism, it is a retract of 𝑗 , which is in particular a left
(right) bi-anodyne extension.

• Page 285, the proof of Corollary 6.3.5 is correct only for 𝐶 cocomplete. For
the general case, we proceed as follows. Let 𝐹 : 𝐼 → 𝐶 a functor which has a
limit in𝐶. Let U be a universe such that both 𝐼 and𝐶 are U-small. We will first
prove that ℎ𝐶 (lim←−−𝑖 𝐹𝑖) is a limit of ℎ𝐶 (𝐹) in the ∞-category of presheaves of
U-small ∞-groupoids. For all objects 𝑋 of 𝐶, we have by the Yoneda Lemma
canonical invertible maps

Hom(𝑋, lim←−−
𝑖

𝐹𝑖) ≃ Hom(𝑋𝐼 , 𝐹)

≃ Hom(ℎ𝐶 (𝑋𝐼 ), ℎ𝐶 (𝐹))
= Hom(ℎ𝐶 (𝑋)𝐼 , ℎ𝐶 (𝐹))

functorially in 𝑋 and 𝐹, where 𝑋𝐼 denotes the constant diagram indexed by
𝐼 with value 𝑋 . This means that, in the identification above, we may take 𝑋
to be a diagram in 𝐶 indexed by some U-small ∞-category 𝐽 (and the Hom’s
as those of the category of functors from 𝐽 to 𝐶 or to 𝐶). In other words, for
such diagram, since the functor 𝑌 ↦→ 𝑌𝐼 commutes with colimits (by Corollary
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6.2.10) we also have:

Hom(lim−−→
𝑗

ℎ𝐶 (𝑋 𝑗 ), ℎ𝐶 (lim←−−
𝑖

𝐹𝑖)) ≃ Hom(𝑋, (lim←−−
𝑖

𝐹𝑖)𝐽 )

≃ Hom(𝑋𝐼 , 𝐹𝐽 )
≃ Hom(ℎ𝐶 (𝑋)𝐼 , ℎ𝐶 (𝐹)𝐽 )
≃ Hom((lim−−→

𝑗

ℎ𝐶 (𝑋 𝑗 ))𝐼 , ℎ𝐶 (𝐹)) .

Since any presheaf is a small colimit of representable presheaves (Corollary
6.2.16), this shows that, for any presheaf Φ on 𝐶 with values in S, we have:

Hom(Φ, ℎ𝐶 (lim←−−
𝑖

𝐹𝑖)) ≃ Hom(Φ𝐼 , ℎ𝐶 (𝐹)) .

In other words, there is a canonical invertible map

ℎ𝐶 (lim←−−
𝑖

𝐹𝑖) → lim←−−
𝑖

ℎ𝐶 (𝐹𝑖) .

Evaluating at an object 𝑋 of 𝐶 and using Corollary 6.2.10 finishes the proof.

• Page 288, the first sentence of the proof of Theorem 6.3.13 should read:

Proof Proposition 6.3.9 gives the essential surjectivity of the functor ℎ∗
𝐴
.

• Page 319, there is a typo (which is repeated several times in the proof of
Proposition 7.1.3). In diagram (7.1.1.1), the object at the lower left corner
should be Hom𝑊 (𝑊, 𝐷):

(7.1.1.1)
Hom𝑊 (𝐶, 𝐷) Hom(𝐶, 𝐷)

Hom𝑊 (𝑊, 𝐷) Hom(𝑊, 𝐷)

The proof of Proposition 7.1.3 should be:

Proof For any ∞-category 𝑋 , the functor ℎ(−, 𝑋) takes anodyne extensions
to trivial fibrations; see Corollary 3.5.13. Therefore, if we put 𝑊 ′ = Ex∞ (𝑊),
we have a trivial fibration

Hom(𝑊 ′, 𝐷) = ℎ(𝑊 ′, 𝐷) → ℎ(𝑊, 𝐷) = Hom𝑊 (𝑊, 𝐷) .
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We define 𝐶′ by forming the following push-out square.

(7.1.3.1)
𝑊 𝐶

𝑊 ′ 𝐶′

Since Hom(𝑊 ′, 𝐷) = ℎ(𝑊 ′, 𝐷), we have Hom𝑊 ′ (𝐶′, 𝐷) = Hom(𝐶′, 𝐷), and
therefore, the Cartesian square obtained by applying the functor Hom(−, 𝐷) to
the coCartesian square (7.1.3.1), together with the Cartesian square (7.1.1.1),
give a Cartesian square of the following form.

(7.1.3.2)
Hom(𝐶′, 𝐷) Hom𝑊 (𝐶, 𝐷)

Hom(𝑊 ′, 𝐷) ℎ(𝑊, 𝐷)

If we choose a fibrant resolution 𝑊−1𝐶 of 𝐶′ in the Joyal model category
structure, we get a trivial fibration of the form

Hom(𝑊−1𝐶, 𝐷) → Hom(𝐶′, 𝐷) .

On the other hand, since the lower horizontal map of diagram (7.1.3.2) is a
trivial fibration, so is the upper one, hence the inclusion 𝛾 : 𝐶 → 𝑊−1𝐶

is a localisation of 𝐶 by 𝑊 . By definition, the map 𝛾 exhibits 𝑊−1𝐶 as a
representation of the functor 𝜋0 (𝑘 (Hom𝑊 (𝐶,−))) in the homotopy category
of the Joyal model category structure. The Yoneda Lemma thus implies that the
pair (𝑊−1𝐶, 𝛾) is unique up to a unique isomorphism in the homotopy category
of the Joyal model category structure. □

• Page 336–339, as spotted by Simon Henry, Theorem 7.2.25 is not correct as
stated (there are missing conditions) and the proof should be corrected. The
statement should be:

Theorem 7.2.25 Let us assume that there is a class of trivial fibrations with
respect to𝑊 . We fix a class 𝐹 of𝑊-local maps and we denote, for each object
𝑥 of 𝐶, by 𝐶 (𝑥) the full subcategory of the slice 𝐶/𝑥 with objects the maps
𝑝 : 𝑦→ 𝑥 that belong to 𝐹. We also assume the following properties:

(i) any trivial fibration belongs to 𝐹;
(ii) for any map 𝑝 : 𝑥 → 𝑦 in 𝐹 and any trivial fibration 𝑞 : 𝑦→ 𝑧, the map

𝑞𝑝 : 𝑥 → 𝑧 is in 𝐹;
(iii) for any object 𝑥, the full subcategory 𝑊 (𝑥) of 𝐶 (𝑥) spanned by trivial

fibrations of codomain 𝑥 forms a right calculus of fractions at (𝑥, 1𝑥) in
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𝐶 (𝑥) with respect to the class of maps whose image through the forgetful
functor 𝐶 (𝑥) ⊂ 𝐶/𝑥 → 𝐶 belong to𝑊 .

Then, for any Cartesian square in 𝐶 of the form

(7.2.25.1)
𝑠 𝑦′

𝑡 𝑦

𝑞

𝑓 ′

𝑝

𝑓

in which the map 𝑝 is in 𝐹, the square

(7.2.25.2)
𝛾(𝑠) 𝛾(𝑦′)

𝛾(𝑡) 𝛾(𝑦)

𝛾 (𝑞)

𝛾 ( 𝑓 ′ )

𝛾 (𝑝)
𝛾 ( 𝑓 )

is Cartesian in𝑊−1𝐶.

Proof By Remark 6.6.11, the image of the Cartesian square (7.2.25.1) by
the Yoneda embedding of 𝐶 may be realized as a Cartesian square of the
contravariant model category structure over 𝐶 of the form

(7.2.25.3)
𝐶/𝑠 𝐶/𝑦′

𝐶/𝑡 𝐶/𝑦

𝑞!

𝑓 ′!

𝑝!

𝑓!

in which all maps are right fibrations (and each structural map of the form
𝐶/𝑐 → 𝐶 is a right fibration whose domain has a final object which is sent to 𝑐
in 𝐶). Each object 𝑥 of 𝐶, will be equipped with the right calculus of fractions
𝑊 (𝑥) associated to some choice of a class of trivial fibrations, i.e., which
consists of the full subcategory of 𝐶/𝑥 whose objects are the pairs (𝑧, 𝑠), with
𝑠 : 𝑧 → 𝑥 a trivial fibration. Pulling-back along the map 𝜋(𝑥) : 𝑊 (𝑥) → 𝐶, we
thus get a Cartesian square over𝑊 (𝑥) of the form

(7.2.25.4)
𝑊 (𝑥)/𝑠 𝑊 (𝑥)/𝑦′

𝑊 (𝑥)/𝑡 𝑊 (𝑥)/𝑦

𝑞!

𝑓 ′!

𝑝!

𝑓!

(in which we have put𝑊 (𝑥)/𝑐 = 𝐶/𝑐 ×𝐶 𝑊 (𝑥)). By virtue of the interpretation
of Theorem 7.2.8 made in Remark 7.2.10, it is sufficient to prove that diagram
(7.2.25.4) is homotopy Cartesian in the Kan-Quillen model category structure.
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For this purpose, we shall apply the dual version of Proposition 4.6.11 to the
functor 𝑝! : 𝑊 (𝑥)/𝑦′ → 𝑊 (𝑥)/𝑦. In other words, we have to give ourselves a
map 𝑤 : 𝑎0 → 𝑎1 in𝑊 (𝑥)/𝑦 and see that pulling back along the induced functor

(7.2.25.5) 𝑤! : (𝑊 (𝑥)/𝑦)/𝑎0 → (𝑊 (𝑥)/𝑦)/𝑎1

gives a weak homotopy equivalence of the form

(7.2.25.6) 𝑤! : (𝑊 (𝑥)/𝑦′ )/𝑎0 → (𝑊 (𝑥)/𝑦′ )/𝑎1 .

Such a map 𝑤 corresponds essentially to a commutative diagram in 𝐶, of the
form

(7.2.25.7)
𝑧0 𝑦

𝑥 𝑧1

𝑔0

𝑠0
𝑤

𝑔1

𝑠1

such that 𝑠0 and 𝑠1 are trivial fibrations. We form the following Cartesian
squares.

𝑧′0 𝑧′1 𝑦′

𝑧0 𝑧1 𝑦

𝑝0

𝑤′

𝑝1

𝑔′1

𝑝

𝑤 𝑔1

Using right caclculus of fractions at (𝑥, 1𝑥) in 𝐶 (𝑥) (under the form of
equivalence (7.2.10.3)), we observe that, for each 𝑖 = 0, 1, the ∞-category
(𝑊 (𝑥)/𝑦′ )/𝑎𝑖 has the weak homotopy type of the mapping space of maps from
(𝑥, 1𝑥) to (𝑧′

𝑖
, 𝑠𝑖 𝑝𝑖) in the localization of 𝐶 (𝑥). In other words, it suffices to

know that 𝑤′ induces an isomorphism in the localization 𝐶 (𝑥). But, since 𝑝 is
𝑊-local, the map 𝑤′ is a weak equivalence. □

• Page 368, 5th line of the proof of Proposition 7.5.6, to make the link with
Theorem 7.2.25 clearer, one should add the following:
Moreover, since each slice 𝐶/𝑥 is an ∞-category with weak equivalences and
fibrations as well, this does not apply to 𝐶 only but to each slice 𝐶/𝑥 as well.
Therefore, by virtue of Proposition 7.4.16, Theorem 7.2.25 applies then here
(with 𝐹 the class of fibrations in 𝐶 𝑓 , so that each ∞-category 𝐶 (𝑥) simply is
the full subcategory of 𝐶/𝑥 spanned by fibrations of codomain 𝑥).

• Page 343, there are typos in the definition of a categorical realisation of a
décalage: in conditions (iii) and (iv), the functor 𝑖 should be applied to the
diagrams (in examples, the functor 𝑖 is an inclusion functor, so that this mistake
does not affect applications in the book). We should read:
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(iii) For any map 𝑓 : 𝑎 → 𝑏 in 𝐴, the commutative square

(7.3.7.2)
𝑖(𝑎) 𝑖(𝐷 (𝑎))

𝑖(𝑏) 𝑖(𝐷 (𝑏))

𝑖 ([𝑎 )

𝑖 ( 𝑓 ) 𝑖 (𝐷 ( 𝑓 ) )
𝑖 ([𝑏 )

is Cartesian.
(iv) For any object 𝑎 of 𝐴, the commutative square

(7.3.7.3)
∅ 𝑖(𝜔)

𝑖(𝑎) 𝑖(𝐷 (𝑎))

𝑖 (𝜋𝑎 )
𝑖 ([𝑎 )

is Cartesian.

• Page 357, in Definition 7.4.6, there is an oversight: the map 𝑓 : 𝑥 → 𝑦 must
be in F.


