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Abstract These notes are an account of a series of lectures I gave at the LMS-
CMI Research School ‘Homotopy Theory and Arithmetic Geometry: Motivic and
DiophantineAspects’, in July 2018, at the Imperial College London. The goal of these
notes is to see how motives may be used to enhance cohomological methods, giving
natural ways to prove independence of ℓ results and constructions of characteristic
classes (as 0-cycles). This leads to the Grothendieck-Lefschetz formula, of which we
give a new motivic proof. There are also a few additions to what have been told in
the lectures:

• A proof of Grothendieck-Verdier duality of étale motives on schemes of finite
type over a regular quasi-excellent scheme (which slightly improves the level of
generality in the existing literature).

• A proof that Q-linear motivic sheaves are virtually integral (Theorem 2.2.12).
• A proof of the motivic generic base change formula.

I am grateful to Shachar Carmeli for having allowed me to use the notes he typed
from my lectures, and to Kévin François for finding a gap in the proof of the motivic
generic base formula. While preparing these lectures and writing these notes, I was
partially supported by the SFB 1085 “Higher Invariants” funded by the Deutsche
Forschungsgemeinschaft (DFG).

Introduction

Let ? be a prime number and @ = ?A a power of ?. Let -0 be a smooth and
projective algebraic variety overF@ . It comes equipped with the geometric Frobenius
map qA : - → - , where - = -0 ×F@ F̄? , so that the locus of fixed points of �
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corresponds to the set of rational points of -0 (various Frobenius morphisms and
their actions are discussed in detail in Remark 3.2.24 below). We may take the graph
of Frobenius ΓqA ⊂ -×- , intersect with the diagonal, then interpret the intersection
number cohomologically with the formula of Lefschetz through ℓ-adic cohomology,
with ℓ ≠ ?.

For each / ⊆ - we can attach a cycle [/] ∈ �∗ (-,Qℓ) and do intersection theory
(interpreting geometrically the algebraic operations on cycle classes). For instance,
if / ′ ⊆ - is another cycle which is transversal to / , we have [/] · [/ ′] = [/ ∩ / ′].
Together with Poincaré duality, this implies that the number of rational points of -0
may be computed cohomologically:

#- (F@) =
∑
8

(−1)8 Tr
(
q∗A : �8 (-,Qℓ) → �8 (-,Qℓ)

)
.

The construction of ℓ-adic cohomology by Grothendieck was aimed precisely at
proving this kind of formulas, with the goal of proving Weil’s conjectures on the
Z-functions of smooth and projective varieties over finite fields, which was finally
achieved by Deligne [Del73, Del80].

Here are two natural problems we would like to discuss:

• Extend this to non-smooth or non-proper schemes and to cohomology with pos-
sibly non-constant coefficients: this is what the Grothendieck-Lefschetz formula
is about.

• Address the problem of independance on ℓ (when we compute traces of endomor-
phisms with a less obvious geometric meaning): this is what motives are made
for.

In this series of lectures, I will explain what is a motive and explain how to prove
a motivic Grothendieck-Lefschetz formula. To be more precise, we shall work with
ℎ-motives over a scheme - , which are one of the many descriptions of étale motives.
These are the objects of the triangulated category DM ℎ (-) constructed and studied
in details in [CD16], which is a natural modification (the non-effective version)
of an earlier construction of Voevodsky [Voe96], following the lead of Morel and
Voevodsky into the realm of P1-stable A1-homotopy theory of schemes. Although
we will not mention them in these notes, we should mention that there are other
equivalent constructions of étale motives which are discussed in [CD16] and [Ayo14]
(not to speak of themanymodels withQ-coefficients discussed in [CD19]), andmore
importantly, that there are also other flavours of motives [VSF00, Kel17, CD15],
which are closer to geometry (and further from topology), for which one can still
prove Lefschetz-Verdier formulas; see [JY18]. Aswewill see later, étalemotiveswith
torsion coefficients may be identified with classical étale sheaves. In particular, when
restricted to the case of torsion coefficients, all the results discussed in these notes
on trace formulas go back to Grothendieck [Gro77]. The case of rational coefficients
has also been studied previously to some extend by Olsson [Ols16, Ols15]. We will
see here how these fit together, as statements about étale motives with arbitrary
(e.g. integral) coefficients. Finally, we will recall the Lefschetz-Verdier trace formula
and explain how to deduce from it the motivic Grothendieck-Lefschetz formula,
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using Bondarko’s theory of weights and Olsson’s computations of local terms of the
motivic Lefschetz-Verdier trace.

1 Étale motives

1.1 The h-topology

Definition 1.1.1 A morphism of schemes 5 : - → . is a universal topological
isomorphism (epimorphism resp.) if for any map of schemes . ′ → . , the pullback
- ′ = . ′ ×. - → . ′ is a homeomorphism (a topological epimorphism resp., which
means that it is surjective and exhibits . ′ as a topological quotient).

Example 1.1.2 Surjective proper maps as well as faithfully flat maps all are universal
epimorphisms.

Proposition 1.1.3 A morphism of schemes 5 : - → . is a universal homeomor-
phism if and only if it is surjective radicial and integral. Namely, 5 is integral and,
for any algebraically closed field  , induces a bijection - ( ) � . ( ).

Example 1.1.4 The map -A43 → - is a universal homeomorphism.

Example 1.1.5 Let  ′/ be a purely inseparable extension of fields. If - is a normal
scheme with field of functions  , and if - ′ is the normalization of - in  ′, then the
induced map - ′→ - is a universal homeomorphism.

Following Voevodsky [Voe96], we can define the ℎ-topology as the Grothendieck
topology on noetherian schemes associated to the pre-topology whose coverings are
finite families {-8 → -}8∈� such that the induced map

∐
8 -8 → - is a univer-

sal epimorphism.1 Beware that the ℎ-topology is not subcanonical: any universal
homeomorphism becomes invertible locally for the ℎ-topology.

Using Raynaud-Gruson’s flatification theorem, one shows the following [Ryd10]:

Theorem 1.1.6 (Voevodsky, Rydh): Let -8 → - be an ℎ-covering. Then there exists
an open Zariski cover - = ∪ 9- 9 and for each 9 a blow-up * ′

9
= �;/ 9* 9 for some

closed subset / 9 ⊆ * 9 , a finite faithfully flat * ′′
9
→ * ′

9
and a Zariski covering

{+ 9 ,U}U of * ′′
9
such that we have a dotted arrow making the following diagram

commutative. ∐
9 ,U + 9 ,U

∐
8 -8

∐
9 *
′′
9

∐
9 *
′
9

∐
9 * 9 -

1 As shown by D. Rydh [Ryd10], this topology can be extended to all schemes, at the price of
adding compatiblities with the constructible topology.
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This means that the property of descent with respect to the ℎ-topology is exactly the
property of descent for the the Zariski topology, together with proper descent.

Remark 1.1.7 Although Grothendieck topologies where not invented yet, a signifi-
cant amount of the results of SGA 1 [Gro03] are about ℎ-descent of étale sheaves
(and this is one of the reasons why the very notion of descent was introduced in
SGA 1). This goes on in SGA 4 [AGV73] where the fact that proper surjective
maps and étale surjective maps are morphism of universal cohomological descent
is discussed at length. However, it is only in Voevodsky’s thesis [Voe96] that the ℎ-
topology is defined and studied properly, with the clear goal to use it in the definition
of a triangulated category of étale motives.

1.2 Construction of motives, after Voevodsky

1.2.1 Let Λ be a commutative ring. Let (ℎℎ (-,Λ) denote the category of sheaves of
Λ-modules on the category of separated schemes of finite type over - with respect
to the ℎ-topology. We have Yoneda functor

. ↦→ Λ(. ) ,

where Λ(. ) is the ℎ-sheaf associated to the presheaf Λ[Hom- (−, . )] (the free Λ
module generated by Hom- (−, . )).

Let us consider the derived category � ((ℎℎ (-,Λ)), i.e. the localization of com-
plexes of sheaves by the quasi-isomorphisms. Here we will speak the language of
∞-categories right away.2 In particular, the word ‘localization’ has to be interpreted
higher categorically (if we take as models simplicial categories, this is also known
as the Dwyer-Kan localization). That means that � ((ℎℎ (-,Λ)) is in fact a sta-
ble ∞-category with small limits and colimits (as is any localization of a stable
model category). Moreover, the constant sheaf functor turns it into an ∞-category
enriched in the monoidal stable ∞-category � (Λ) of complexes of Λ-modules (i.e.
the localization of the category of chain complexes of Λ-modules by the class of
quasi-isomorphisms). In particular, for any objects F and G of � ((ℎℎ (-,Λ)), mor-
phisms from F to G form an object Hom(F,G) of � (Λ). The appropriate version of
the Yoneda Lemma thus reads:

Hom(Λ(. ),F) � F(. )

for any separated --scheme of finite type . . In particular, �8 (.,F) = �8 (F(. )) is
what the old fashioned literature would call the 8-th hypercohomology group of .
with coefficients in F.

2 We refer to [Lur09, Lur17] in general. However, most of the literature on motives is written using
the theory of Quillen model structures. The precise way to translate this language to the one of
∞-categories is discussed in Chapter 7 of [Cis19].
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1.2.2 A sheaf F is called A1-local if F(. ) → F(. ×A1) is an equivalence for all . .
A map 5 : " → # is an A1-equivalence if for every A1-local F the map

5 ∗ : Hom(#,F) → Hom(",F)

is an equivalence.
Define

DM eff
ℎ
(-,Λ)

to be the localization of � ((ℎℎ (-,Λ)) with respect to A1-equivalences. We have a
localization functor� ((ℎℎ (-,Λ)) → DM eff

ℎ
(-,Λ)with fully faithfull right adjoint

whose essential image consists of the A1-local objects. An explicit description of
the right adjoint is by taking the total complex of the bicomplex

�∗ (F) (. ) = · · · → F(. × Δ=
A1 ) → · · · → F(. × Δ1

A1 ) → F(. ) ,

whereΔ=
A1 = (?42(: [G0, . . . , G=]/(G0+· · ·+G= = 1)). The∞-categoryDM eff

ℎ
(-,Λ)

comes equipped with a canonical functor

W- : (2ℎ/- × � (Λ) → DM eff
ℎ
(-,Λ)

defined by W- (.,  ) = Λ(. ) ⊗Λ  . Furthermore, it is a presentable∞-category (as
a left Bousfield localization of a presentable ∞-category, namely � ((ℎℎ (-,Λ))),
and thus has small colimits and small limits. For a cocomplete ∞-category �, the
category of colimit preserving functors DM eff

ℎ
(-,Λ) → � is equivalent to the

category of functors � : (2ℎ/- × � (Λ) → � with the following two properties:

• For each --scheme. , the functor � (.,−) : � (Λ) → � commutes with colimits.
• For each complex of Λ-modules  , we have:

a) the first projection induces an equivalence � (. × A1,  ) � � (.,  ) for any
--scheme . ;

b) for any ℎ-hypercovering * of . , the induced map colimΔop � (*,  ) →
� (.,  ) is invertible.

The functor DM eff
ℎ
(-,Λ) → � associated to such an � is constructed as the left

Kan extension of � along W- .
There is still an issue. Indeed, let ∞ ∈ P1 and let us form the following cofiber

sequence:
Λ(-) ∞→ Λ(P1) → Λ(1) [2]

In order to express Poincaré duality (or, more generally, Verdier duality), we need
the cofiber Λ(1) [2] above to be ⊗-invertible. But it is not so.

Definition 1.2.3 An object � ∈ � is ⊗-invertible if the functor � ⊗ − : � → � is an
equivalence of∞-categories.

We want to invert a non-invertible object. Let us think about the case of a ring.
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'[ 5 −1] = colim('
5
→'

5
→ · · ·)

(The colimit is taken within '-modules.) For∞-categories, we define � [�−1] with
a similar colimit formula. Note however that the colimit needs to be taken in the
category of presentable∞-categories (in which the maps are the colimit preserving
functors). We get an explicit description of this colimit as follows. For� presentable,
� [�−1] can be described as the limit of the diagram

· · ·
Hom (�,−)
−−−−−−−−−→ �

Hom (�,−)
−−−−−−−−−→ �

Hom (�,−)
−−−−−−−−−→ �

in the ∞-category of ∞-categories (here, Hom (�,−) is the right adjoint of the
functor � ⊗ −). Therefore, an object in � [�−1] is typically a sequence ("=, f=)=≥0
with "= objects of � and f= : "=

∼→ Hom (�, "=+1) equivalences in �. Note that,
in the case where � is the circle in the∞-category of pointed homotopy types, we get
exactly the definition of an Ω-spectrum from topology. There is a canonical functor

Σ∞ : � → � [�−1]

which is left adjoint to the functor

Ω∞ : � [�−1] → �

defined as Ω∞ (") = "0 where " = ("=, f=)=≥0 is a sequence as above.
There is still the issue of having a natural symmetric monoidal structure on

� [�−1], which is not automatic. However, if the cyclic permutation acts as the
identity on �⊗3 (by permuting the factors) in the homotopy category of�, then there
is a unique symmetric monoidal structure on� [�−1] such that the canonical functor
Σ∞ : � → � [�−1] is symmetric monoidal (all these issues are very well explained
in Robalo’s [Rob15]). Fortunately for us, Voevodsky proved that this extra property
holds for � = DM eff

ℎ
(-,Λ) and � = Λ(1).

Definition 1.2.4 The big category of ℎ-motives is defined as:

DM ℎ (-,Λ) = DM eff
ℎ
(-,Λ) [Λ(1)−1] .

Remark 1.2.5 However, what is important here is the universal property of the stable
∞-categoryDM ℎ (-,Λ); given a cocomplete∞-category�, togetherwith an equiva-
lence of categories ) : � → � each colimit preserving functor i : DM eff

ℎ
(-,Λ) →

� equipped with an invertible natural transformation i(" ⊗ Λ(1) [2]) � ) (i("))
is the composition of a unique colimit preserving functor Φ : DM ℎ (-,Λ) → �

equippedwith an invertible natural transformationΦ("⊗Σ∞Λ(1) [2]) � ) (Φ(")).

Remark 1.2.6 We are very far from having locally constant sheaves here! In classical
settings, the Tate object Λ(1) is locally constant (more generally, for a smooth and
proper map 5 : - → . we expect each cohomology sheaf '8 5∗ (Λ) to be locally
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constant). However the special case of the projective line shows that we cannot have
such a property motivically: Over field : , the cohomology with coefficients in Q
vanishes in degree > 0, while, with coefficients inQ(1), it is equal to :×⊗Q in degree
1. Therefore we should ask what is the replacement of locally constant sheaves. This
will be dealt with later, when we will explain what are constructible motives.
Definition 1.2.7 We have an adjunction

Σ∞ : DM eff
ℎ
(-,Λ) � DM ℎ (-,Λ) : Ω∞

and we define " (. ) = Σ∞Λ(. ). This is the motive of . over - , with coefficents in
Λ.
As we want eventually to do intersection theory, we need Chern classes within
motives. Here is how they appear. Consider the morphisms of ℎ-sheaves of groups
Z(A1−{0}) → G< on the category (2ℎ/- corresponding to the identityA1−{0} =
G<, seen as a map of sheaves of sets. From the pushout diagram

A1 − {0} A1

A1 P1

and from the identification Z � Z(A1), we get a (split) cofiber sequence

Z→ Z(A1 − {0}) → Z(1) [1]

Since the map Z(A1 − {0}) → G< takes Z to 0, it induces a canonical map
Z(1) [1] → G<.
Theorem 1.2.8 (Voevodsky) The map Z(1) [1] → G< is an equivalence in the
effective category DM eff

ℎ
(-,Z).

As a result, we get canonical maps:
• ℎ-hypersheafification:

%82(-) = �1
/0A (-,G<) → �0Hom� ((ℎℎ (-,Λ)) (Z,G< [1]) ;

• A1-localization:

�0Hom� ((ℎℎ (-,Λ)) (Z,G< [1]) → �0Hom
DM eff

ℎ

(Z,G< [1]) ;

• P1-stabilization:

�0Hom
DM eff

ℎ
(-,Z) (Z,G< [1]) → �0HomDM ℎ (-,Z) (Z,Z(1) [2]) .

By composition this gives us the first motivic Chern classes of line bundles.

21 : %82(-) → �2
" (-,Z(1)) = �0HomDM ℎ (-,Z) (Z,Z(1) [2])
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1.3 Functoriality

1.3.1 Recall that we have an assignment

- ↦→ DM ℎ (-,Λ).

There is a unique symmetric monoidal structure onDM ℎ (-,Λ) such that the functor
" : (2ℎ/- → DM ℎ (-,Λ) is monoidal. It has the following properties (we write
Λ = " (-) � Σ∞ (Λ) and Λ(1) = Σ∞ (Λ(1))):
• �(1) � � ⊗ Λ(1); all functors of interest always commute with the functor
� ↦→ �(1).

• " (. × P1) � " (. ) [2] ⊕ " (. ).
• �(=) = � ⊗ Λ(=) is well defined for all = ∈ Z (with Λ(=) the dual of Λ(−=) for
= < 0 and Λ(0) = Λ, Λ(= + 1) � Λ(=) (1) for = ≥ 0).

• There is an internal Hom functor Hom .
For a morphism 5 : - → . we have 5 ∗ : DM ℎ (.,Λ) → DM ℎ (-,Λ) which
preserves colimits and thus has right adjoint 5∗ : DM ℎ (-,Λ) → DM ℎ (.,Λ). No
property of 5 is required for that. We construct first the functor

5 ∗ : DM eff
ℎ
(.,Λ) → DM eff

ℎ
(-,Λ)

as the unique colimit preserving functor which fits in the commutative diagram

(2ℎ/. × � (Λ) (2ℎ/- × � (Λ)

DM eff
ℎ
(.,Λ) DM eff

ℎ
(-,Λ)

5 ∗×1� (Λ)

5 ∗

(in which the vertical functors are the canonical ones (*,�) ↦→ " (*) ⊗Λ �), and
observe that it has a natural structure of symmetric monoidal functor. There is thus
a unique symmetric monoidal pull-back functor 5 ∗ defined on DM ℎ so that the
following squares commutes.

DM eff
ℎ
(.,Λ) DM eff

ℎ
(-,Λ)

DM ℎ (.,Λ) DM ℎ (-,Λ)

5 ∗

Σ∞ Σ∞

5 ∗

If moreover 5 is separated and of finite type then the pull-back functor 5 ∗ has a
left adjoint functor 5♯ : DM ℎ (-,Λ) → DM ℎ (.,Λ) which preserves colimits, and
is essentially determined by the property that 5♯" (*) = " (*) for any separated
--scheme of finite type * via universal properties as above. For example 5♯ (Λ) =
" (-). We have a projection formula (proved by observing that the formula holds in
the category of schemes and then extending by colimits)
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5♯ (� ⊗ 5 ∗ (�))
'→ 5♯� ⊗ �.

Exercise 1.3.2 Show that, for any Cartesian square of noetherian schemes

- ′ -

. ′ .

D

5 ′ 5

{

and for any " inDM ℎ (-,Λ), if { is separated of finite type, then the canonical map

{∗ 5∗ (") → 5 ′∗D
∗ (")

is invertible.

The base change formula above is too much: we want this to hold only for 5 proper
of { smooth, because, otherwise, we will not have any good notion of support of a
motive. This is why we have to restrict ourselves to a subcatefgory of DM ℎ (-,Λ),
on which the support will be well defined.

Definition 1.3.3 Let DM ℎ (-,Λ) be the smallest full subcategory of DM ℎ (-,Λ)
closed under small colimits, containing objects of the form " (*) (=) [8] for* → -

smooth and 8, = ∈ Z.

Remark 1.3.4 The ∞-category DM ℎ (-,Λ) is stable and presentable, essentially by
construction. It is also stable under the operator " ↦→ " (=) for all = ∈ Z.

Theorem 1.3.5 (Localization Property) Take 8 : /→ - to be a closed emdebbing
with open complement 9 : *→ - and let " ∈ DM ℎ (-,Λ). Then we have a
canonical cofiber sequence (in which themaps are the co-unit and unit of appropriate
adjunctions):

9♯ 9
∗" → " → 8∗8

∗"

Idea of the proof: the functors 9♯, 9∗, 8∗ and 8∗ commute with colimits. Therefore, it
is sufficient to prove the case where " = " (*) with*/- smooth. We conclude by
an argument due to Morel and Voevodsky, using Nisnevich excision as well as the
fact, locally for the Zariski topology, * is étale on A= × - . Then, using Nisnevich
excision, we reduce to the vase where * = A= × - , in which case we can provide
explicit A1-homotopies.

Exercise 1.3.6 Show that 9♯ 9∗" → " → 8∗8∗" is not a cofiber sequence in
DM ℎ (-,Λ) for an arbitrary object " .

The functor 5 ∗ restricts to a functor on DM ℎ , and also for 5♯ if 5 is smooth.
Moreover,DM ℎ is closed under tensor product. If 8 : / → - is a closed immersion,
than by the cofiber sequence above we see that the functor 8∗ sends DM ℎ (/,Λ) to
DM ℎ (-,Λ).
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Remark 1.3.7 By presentability, the inclusionDM ℎ (-,Λ)
8→ DM ℎ (-,Λ) has right

adjoint d.
For 5 : - → . we define

5∗ : �"ℎ (-,Λ) → �"ℎ (.,Λ)

by
5∗" = d 5∗8(")

We can use this to describe the internal Hom as well:

Hom (�, �) = fHom (8(�), 8(�)) .

Proposition 1.3.8 For any embedding 8 : / → - the functors 8∗, 8♯ are both fully
faithful.

Using this and some abstract nonsense we get that 8∗ has a right adjoint 8! and there
are canonical fiber sequences

8∗8
!" → " → 9∗ 9

∗"

We also have a smooth base change formula and a proper base change formula:

Theorem 1.3.9 (Ayoub, Cisinski-Déglise) For any Cartesian square of noetherian
schemes

- ′ -

. ′ .

D

5 ′ 5

{

and for any " in DM ℎ (-,Λ), if either { is separated smooth of finite type, or if 5
is proper, then the canonical map

{∗ 5∗ (") → 5 ′∗D
∗ (")

is invertible in DM ℎ (-,Λ).

The proof follows from Ayoub’s axiomatic approach [Ayo07], under the additional
assumption that all the maps are quasi-projective. The general case may be found in
[CD19, Theorem 2.4.12].

Definition 1.3.10 (Deligne) Let 5 : - → . be separated of finite type, or equiva-
lently, by Nagata’s theorem, assume that there is a relative compactification which is
a factorization of 5 as

-
9
→ -̄

?
→ . ,

where 9 is an open embedding and ? is proper. Then we define

5! = ?∗ 9♯
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Here are the main properties we will use (see [CD19]):
• The functor 5! admits a right adjoint 5 ! (because it commutes with colimits).
• There is a comparison map 5! → 5∗ constructed as follows. There is a map
9♯ → 9∗ which corresponds by transposition to the inverse of the isomorphism
from 9∗ 9∗ to the identity due to the fully faithfulness of 9∗. Therefore we have a
map 5! = ?∗ 9♯ → ?∗ 9∗ � 5∗.

• Using the proper base change formula, we can prove that push-forwards with
compact support are well defined: in particular, the functor 5! does not depend
on the choice of the compactification of 5 up to isomorphism. Furthermore, if 5
and � are composable, there is a coherent isomorphism 5!�! � ( 5 �)!.

The proof of the proper base change formula relies heavily on the following property.
Theorem 1.3.11 (Relative Purity) If 5 : - → . is smooth and separated of finite
type, then

5 ! (") � 5 ∗ (") (3) [23]

where 3 = 38<(-/. ).
The first appearance of this kind of result in a motivic context (i.e. in stable homotopy
category of schemes) was in a preprint of Oliver Röndigs [Rön05]. As a matter of
facts, the proof of relative purity can be made with a great level of generality, as in
Ayoub’s thesis [Ayo07], wherewe see that the only inputs are the localization theorem
and A1-homotopy invariance. However, in our situation (where Chern classes are
available), the proof can be dramatically simplified (see the proof [CD16, Theorem
4.2.6], which can easily be adapted to the context of ℎ-sheaves). A very neat and
robust proof (in equivariant stable homotopy category of schemes, but which may be
seen in any context with the six operations) may be found in Hoyois’ paper [Hoy17].
Remark 1.3.12 For a vector bundle � → - of rank A , we can define its Thom space
)ℎ(�) by the cofiber sequence

Λ(� − 0) → Λ(�) → )ℎ(�)

(where � − 0 is the complement of the zero section). Using motivic Chern classes,
we can construct the Thom isomorphism

)ℎ(�) � Λ(A) [2A] .

What is really canonical and conceptually right is

5 ! (") � 5 ∗ (") ⊗ )ℎ() 5 ).

We refer to Ayoub’s work for more details. From this we can deduce a formula
relating 5! and 5♯ when 5 is smooth. By transposition, relative putity takes the
following form.

Corollary 1.3.13 If 5 : - → . is smooth and separated of finite type then

5♯ (") � 5! (") (3) [23] .
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Finally, we also need the Projection Formula (see [CD19, Theorem 2.2.14]):

Proposition 1.3.14 If 5 : - → . is separated of finite type then, for any � in
DM ℎ (-,Λ) and any � in DM ℎ (.,Λ), there is a canonical isomorphism:

5! (� ⊗ 5 ∗�) � 5! (�) ⊗ � .

Exercise 1.3.15

• Let 5 : - → . , then 5∗Hom ( 5 ∗", #) � Hom (", 5∗#).
• For 5 separated of finite type we have Hom ( 5!", #) � 5∗Hom (", 5 !#).
• For 5 as above, 5 !Hom (", #) � Hom ( 5 ∗", 5 !#)
• For 5 smooth, 5 ∗Hom (", #) � Hom ( 5 ∗", 5 ∗#).

A reformulation of the proper base change formula is the following.

Theorem 1.3.16 For any pull-back square of noetherian schemes

- ′ -

. ′ .

D

5 ′ 5

{

with 5 is separated of finite type, we have {∗ 5! � 5 ′
!
D∗ and 5 !{∗ � D∗ ( 5 ′)!.

Remark 1.3.17 Given a morphism of rings of coefficients Λ → Λ′, there is an
obvious change of coefficients functor

DM ℎ (-,Λ) → DM ℎ (-,Λ′) , " ↦→ Λ′ ⊗Λ "

which is symmetric monoidal and commutes with the four operations 5 ∗, 5∗, 5 !
and 5! whenever they are defined. Moreover, one can show that an object " in
DM ℎ (-,Z) is null if and only if Q ⊗ " � 0 and Z/?Z ⊗ " � 0 for any prime
number ?; see [CD16, Prop. 5.4.12]. Fortunately, DM ℎ (-,Λ) may be understood
in more tractable terms whenever Λ = Q of Λ is finite, as we will see in the next
section.

1.4 Representability theorems

1.4.1 We define étale motivic cohomology3 of - with coefficients in Λ as

�8" (-,Λ(=)) = �8 (Hom�"ℎ (-,Λ) (Λ,Λ(=)))

for all 8, = ∈ Z.

3 Also known as Lichtenbaum cohomology.
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Theorem 1.4.2 (Suslin-Voevodsky, Cisinski-Déglise) For any noetherian scheme
of finite dimension - ,

�8" (-,Q(=)) � ( �2=−8 (-) ⊗ Q) (=)

where  � is the homotopy invariant K-theory of Weibel and the ”(=)” stands for
the fact that we take the intersection of the :=-eigen-spaces of the Adams operations
k: for all : . For - regular, we simply have �8

"
(-,Q(=)) � ( 2=−8 (-) ⊗ Q) (=) . In

particular, for - regular and = ∈ Z, we have:

��= (-) ⊗ Q � �2=
" (-,Q(=)) .

The case where - is separated and smooth of finite type over a field is due to Suslin
and Voevodsky (puting together the results of [SV96] and of [VSF00]). The general
case follows from [CD16, Theorem 5.2.2], using the representability theorem of
 � announced in [Voe98] and proved in [Cis13]. More generally, one may recover
motivically Q-linear Chow groups of possibly singular schemes as well as Bloch’s
higher Chow groups as follows.
Theorem 1.4.3 (motivic cycle class) Let 5 : - → (?42(:) be separated of finite
type. Then

�0 (Hom�"ℎ (-,Q) (Q(=) [2=], 5 !Q)) � ��= (-) ⊗ Q

and, if - is equidimensional of dimension 3, then

�0 (HomDM ℎ (-,Q) (Q(=) [8], 5 !Q)) � ��3−= (-, 8 − 2=) ⊗ Q .

This follows from [CD15, Corollaries 8.12 and 8.13, Remark 9.7]. These repre-
sentability result may be used to see how classical Grothendieck motives of smooth
projective varieties over a field : may be seen in this picture: they form the full
subcategory ofDM ℎ (Spec(:),Q) whose objects are the direct factors of motives of
the form " (*) (=) with * smooth and projective over : and = ∈ Z). The following
statement is known as rigidity theorem
Theorem 1.4.4 (Suslin-Voevodsky, Cisinski-Déglise) Given a locally noetherian
scheme - , there is a canonical equivalence of∞-categories

�"ℎ (-,Λ) � � ((ℎ(-4C ,Λ))

for Λ of positive invertible characteristic on - , compatible with 6-operations. In
particular

�8" (-,Λ( 9)) � �84C (-, `
⊗ 9
= ⊗ Λ).

The case where - is the spectrum of a field is essentially contained in the work of
Suslin and Voevodsky [SV96]. See [CD16, Corollary 5.5.4] for the general case. We
should mention that the equivalence of categories above is easy to construct. The
main observation is Voevodsky’s theorem 1.2.8, together with the Kummer short
exact sequence induced by C ↦→ C=
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0→ `= → G< → G< → 0

(where `= is the sheaf of =-th roots of unity), from which follows the identification
Λ(1) � `= ⊗Z/=Z Λ, where = is the characteristic of Λ. In particular, Λ(1) is already
⊗-invertible, which implies (by inspection of universal properties) that

DM eff
ℎ
(-,Λ) � DM ℎ (-,Λ) .

On the other hand, DM eff
ℎ
(-,Λ) is a full subcategory of the derived cate-

gory of ℎ-sheaves of Λ-modules. The comparison functor from DM eff
ℎ
(-,Λ) to

� ((ℎ(-4C ,Λ)) is simply the restriction functor. The precise formulation of the
previous theorem is that the composition

DM ℎ (-,Λ) ⊂ DM ℎ (-,Λ) � DM eff
ℎ
(-,Λ) → � ((ℎ(-4C ,Λ))

is an equivalence of∞-categories.
Remark 1.4.5 If 2ℎ0A (Λ) = ?8 then one proves that �"ℎ (-,Λ) � �"ℎ (- [ 1? ],Λ)
(using the Artin-Schreier short exact sequence together with the localization prop-
erty) so that we can assume that the ring of functions on - always has the character-
istic of Λ invertible in it; see [CD16].

Remark 1.4.6 One can have access to �8
"
(-,Z(=)) via the coniveau spectral se-

quence whose �1 term is computed as Cousin complex, and thus gives rise to a nice
and rather explicit theory of residues; see [CD16, (7.1.6.a) and Prop. 7.1.10].

2 Finiteness and Euler characteristic

2.1 Locally constructible motives

2.1.1 Recall that an object - in a tensor category � is dualizable (we also say rigid)
if there exists . ∈ � such that - ⊗ − is left adjoint to . ⊗ −. This provides an
isomorphism . � Hom (-, 1� ). In other words . ⊗ 0 � Hom (-, 0). This way,
we get the evaluation map n : . ⊗ - → 1� and as well as the co-evaluation map
[ : 1� → - ⊗ . . This exhibits the adjunction between the tensors. In particular,
composing n and [ approriately tensored by - or . gives the identity:

1- : - → - ⊗ . ⊗ - → - and 1. : . → . ⊗ - ⊗ . → . .

Remark 2.1.2 If � : � → � is a monoidal functor, if G ∈ � dualizable then so
is � (G), and � (G∧) � � (G)∧. Furthermore, � also preserve internal Hom from G,
since Hom (G, ~) � G∧ ⊗ ~ for all ~.

Remark 2.1.3 If � ∈ � ((ℎ4C (-,Λ)) then it is dualizable if and only if it is locally
constant with perfect fibers; see [CD16, Remark 6.3.27]. That means that � is du-
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alizable if and only if the following condition holds: there is a surjective étale map
D : - ′→ - together with a perfect complex of Λ-modules  ∈ %4A 5 (Λ) (i.e. com-
plex of Λ-modules  which is quasi-isomorphic to a bounded complex of projective
Λ-modules of finite type), and an isomorphism  - ′ � D

∗ (�) in � ((ℎ4C (- ′,Λ)),
where  - ′ is the constant sheaf on - ′ associated to  .

2.1.4 Suppose 1/= ∈ O- , = = 2ℎ0A (Λ) > 0. Then �"ℎ (-,Λ) � � ((ℎ4C (-,Λ)).
Inside it, we have the subcategory �1

2C 5
(-4C ,Λ) of constructible sheaves finite tor-

dimension. If there is 3 such that 23 (: (G)) ≤ 3 for every point G of - , then it is simply
the subcategory of compact objects. In general, this subcategory �1

2C 5
(-4C ,Λ) is

important because it is closed under the six operations. We look for correspondent in
motives with arbitrary ring of coefficientsΛ. We can characterise those étale sheaves
by

{� ∈ � ((ℎ4C (-,Λ)) | ∃ stratification -8 : � |-8 locally constant with perfect fibers}

Namely, an object� of � ((ℎ4C (-,Λ)) is constructible of finite tor-dimension if and
only if there exists a finite stratification of - by locally closed subschemes -8 together
with q8 : *8 → -8 étale surjective for each 8, and there is  8 ∈ %4A 5 (Λ) (compact
objects in the derived category of Λ-modules), and an isomorphism q∗

8
(� |-8 ) �

( 8)*8 in the derived category of sheaves of Λ-modules on the small étale site of*8;
see [CD16, Remark 6.3.27].

Exercise 2.1.5 (Poincaré Duality) Let 5 : - → . be smooth and proper of relative
dimension 3. Then, if " ∈ �"ℎ (-,Λ) is dualizable, so is 5∗ (") and

5∗ (")∧ � 5∗ ("∧) (−3) [−23]

with "∧ = Hom (",Λ) the dual of " .

Definition 2.1.6 The ∞-category �"ℎ,2 (-,Λ) of constructible Λ-linear étale mo-
tives over - is the smallest thick subcategory (closed under shifts, finite colimits and
retracts) containing 5♯ (Λ) (=) for any 5 : * → - smooth and every = ∈ Z.

The following proposition is an easy consequence of relative purity and of the proper
base change formula.

Proposition 2.1.7 The ∞-category DM ℎ,2 (-,Λ) is equal to each of the following
subcategories of DM ℎ (-,Λ):
• The smallest thick subcategory containing 5∗ (Λ) (=) for 5 : * → - proper and
= ∈ Z.

• The smallest thick subcategory containing 5! (Λ) (=) for 5 : * → - separated of
finite type and = ∈ Z.

Theorem 2.1.8 (Absolute Purity) If 8 : / → - is a closed emmersion and as-
sume that both -, / are regular. Let 2 = 2>38<(/, -). Then there is a canonical
isomorphism

8! (Λ- ) � Λ/ (−2) [−22] .
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See [CD16, Theorem 5.6.2]
Remark 2.1.9 Modulo the rigidity theorem 1.4.4, the proof for the case of finite
coefficients is due to Gabber and was known for a while, with two different proofs
[Fuj02, ILO14] (although, in characteristic zero, this goes back to Artin in SGA 4).
After formal reductions using deformation to the normal cone, one sees that, in order
to prove the absolute purity theorem above, it is then sufficient to consider the case
where Λ = Q. The idea is then that Quillen’s localization fiber sequence

 (/)  (-)  (- − /)

 (�>ℎ(/))  (�>ℎ(-))  (�>ℎ(- − /))

o o o

induces a long exact sequence which we may tensor with Q, and Absolute purity
is then proved using the representability theorem of  -theory in the motivic stable
homotopy category together with a variation on the Adams-Riemann-Roch theorem.
We recall that a locally noetherian scheme - is quasi-excellent if the following two
conditions are verified:

1. For any point G ∈ - , the completion map O-,G → Ô-,G is regular (i.e., for any
field extension  of the residue field ^(G), the noetherian ring  ⊗^ (G) Ô-,G is
regular).

2. For any scheme of finite presentation . over - , there is a regular dense open
subscheme* ⊂ . .

A locally noetherian scheme is excellent if it is quasi-excellent and universally
catenary. In practice, what needs to be known is that any scheme of finite type over
a quasi-excellent scheme is quasi-excellent, and (?42(') is excellent whenever '
is either a field or the ring of integers of a number field (note also that noetherian
complete local rings are excellent).

Theorem 2.1.10 (de Jong-Gabber [ILO14]) Any quasi-excellent scheme is regular
locally for the ℎ-topology. In other words, for any quasi-excellent scheme - , there
exists an ℎ-covering {-8 → -}8 with each -8 regular. Furthermore, locally for the
ℎ-topology any nowhere dense closed subscheme of - is either empty of a divisor
with normal crossings: given any nowhere dense closed subscheme / ⊂ - , we may
choose the covering above such that the pullback of / in each -8 is either empty
or a divisor with normal crossings. Even better, given a prime ℓ invertible in O- ,
we may always choose ℎ-coverings {-8 → -}8 as above such that, for each point
G ∈ - , there exists an 8 and there exists G8 ∈ -8 such that ?8 (G8) = G and such that
[: (G8) : : (G)] is prime to ℓ.

Remark 2.1.11 One can show that the category �"ℎ,2 (-,Λ) is preserved by the
6 operations. However, there is a drawback: unless we make finite cohomological
dimension assumptions, the category �"ℎ,2 in not always a sheaf for the étale
topology! Here is its étale sheafification (which can be proved to be a sheaf of
∞-categories for the ℎ-topology).



Cohomological Methods in Intersection Theory 17

Definition 2.1.12 A motivic sheaf " is in DM ℎ (-,Λ) is locally constructible if
there is an étale surjection 5 : * → - such that 5 ∗" ∈ �"ℎ,2 (-,Λ).

Denote the full subcategory of locally constructible motives by DM ℎ,;2 (-,Λ).

Remark 2.1.13 If Q ⊂ Λ, then DM ℎ,2 (-,Λ) = DM ℎ,;2 (-,Λ) simply is the full
subcategory of compact objects in DM ℎ (-,Λ); see [CD16, Prop. 6.3.3].

Theorem 2.1.14 (Cisinski-Déglise) The equivalence DM ℎ (-,Λ) � � (-4C ,Λ) re-
stricts to an equivalence of∞-categories

DM ℎ,;2 (-,Λ) � �12C 5 (-,Λ)

whenever Λ is noetherian of positive characteristic =, with 1
=
∈ O- .

See [CD16, Theorem 6.3.11].
For any morphism of noetherian schemes 5 : - → . , the functor 5 ∗ sends locally

constructible ℎ-motives to locally constructible ℎ-motives, and, in the case where 5
is separated of finite type, so does the functor 5!. The theorem of de Jong-Gabber
above, together with Absolute Purity, are the main ingredients in the proof of the
following finiteness theorem.

Theorem 2.1.15 (Cisinski-Déglise) The six operations preserve locally construct-
ible ℎ-motives, at least when restricted to separated morphisms of finite type between
quasi-excellent noetherian schemes of finite dimension:

1. for any such scheme - and any locally constructible ℎ-motives " and # over - ,
the ℎ-motives " ⊗ # and Hom (", #) are locally constructible;

2. for any morphism of finite type 5 : - → . between quasi-excellent noetherian
schemes of finite dimension, the four functors 5 ∗, 5∗, 5!, and 5 ! preserve the
property of being locally constructible.

See [CD16, Corollary 6.3.15].

Theorem 2.1.16 (Cisinski-Déglise) Let - be a noetherian scheme of finite dimen-
sion, and " an object of DM ℎ (-,Λ).

1. If " is dualizable, then it is locally constructible.
2. If there exists a closed immersion 8 : / → - with open complement 9 : * → -

such that 8∗ (") and 9∗ (") are locally constructible, then " is locally con-
structible.

3. If " is locally constructible over - , then there exists a dense open immersion
9 : * → - such that 9∗ (") is dualizable in DM ℎ,;2 (*).

This is a reformulation of (part of) [CD16, Theorem 6.3.26].

Remark 2.1.17 In particular, an object " of DM ℎ (-,Λ) is constructible if and
only if there exists a finite stratification of - by locally closed subschemes -8 such
that each restriction " |-8 is dualizable in DM ℎ (-8 ,Λ). This may be seen as an
independence of ℓ result. Indeed, as we will recall below, there are ℓ-adic realization
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functors and they commute with the six functors. In particular, for each appropriate
prime number ℓ, the ℓ-adic realization 'ℓ (") is a constructible ℓ-adic sheaf: each
restriction 'ℓ (")|-8 is smooth (in the language of SGA 4, ‘localement constant
tordu’)4, where the -8 form a stratification of - which is given independently of ℓ.
Furthermore, if we apply any of the six operations to 'ℓ (") in the ℓ-adic context,
then we obtain an object of the from 'ℓ (#) for some locally constructible motive # ,
and thus a stratification as above relatively to 'ℓ (#) which does not depend on ℓ.

2.2 Integrality of traces and rationality of '-Functions.

2.2.1 For G a dualizable object in a tensor category � with unit object 1, we can
from the trace of an endomorphism. Indeed the trace of 5 : G → G is the map
)A ( 5 ) : 1→ 1 defined as the composite bellow.

1
unit−−→ Hom (G, G) � G∧ ⊗ G

1⊗ 5
−−−−→ G∧ ⊗ G evaluation−−−−−−−→ 1

If a functor Φ : � → � is symmetric monoidal, then the induced map

Φ : Hom� (G, G) → Hom� (1, 1)

preserves the formation of traces: Φ()A ( 5 )) = )A (Φ( 5 )).

2.2.2 If " ∈ DM ℎ,;2 ((?42(:),Λ) for : a field (see Def. 2.1.12), then " is dualiz-
able. Furthermore, the unit is Λ and we can compute

�0HomDM ℎ,;2 ((?42 (:) ,Λ) (Λ,Λ) = Λ ⊗ Z[1/?]

where ? is the exponent characteristic of : (i.e. ? = 2ℎ0A (:) if 2ℎ0A (:) > 0 or
? = 1 else). For 5 : " → " any map in DM ℎ,;2 ((?42(:),Z), we thus have its
trace

)A ( 5 ) ∈ Z[1/?] .

The Euler characteristic of a dualizable object " of DM ℎ ((?42(:),Z) is defined
as the trace of its identity:

j(") = )A (1" ) .

For separated :-scheme of finite type - , we define in particular

4 It is standard terminology to call such ℓ-adic sheaves ‘lisses’. This comes from Deligne’s work,
which is written in French. I prefer to translate into ‘smooth’ because this is what we do for
morphisms of schemes. The reason is that this terminology comes from the fact that there are
transersality conditions one can define between (motivic or ℓ-adic) sheaves and morphisms of
schemes, and that a basic intuition about smoothness is that a smooth object is transverse to
anything: indeed, a smooth sheaf is transverse to any morphism, while any sheaf is transverse to a
smooth morphism. This why I think it is better to use the same word to express the smoothness of
both sheaves and morphisms of schemes.
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j2 (-) = j(0!Z)

with 0 : - → (?42(:) the structural map.

2.2.3 Let - be a noetherian scheme and ℓ a prime number. LetZ(ℓ) be the localization
of Z at the prime ideal (ℓ). We may identify DM ℎ (-,Q) as the full subcategory
of DM ℎ (-,Z(ℓ) ) whose objects are the motives " such that "/ℓ" � 0, where
"/ℓ" � Z/ℓZ ⊗ " is defined via the following cofiber sequence:

"
ℓ−→ " → "/ℓ" .

We define
�̂ (-,Zℓ) = DM ℎ (-,Z(ℓ) )/DM ℎ (-,Q) .

In other words, �̂ (-,Zℓ) is the localization (in the sense of ∞-categories) of
DM ℎ (-,Z(ℓ) ) by the maps 5 : " → # whose cofiber is uniquely ℓ-divisible
(i.e. lies in the subcategory DM ℎ (-,Q)). One can show that, if 1

ℓ
∈ O- , the homo-

topy category of �̂ (-,Zℓ) is Ekedahl’s derived category of ℓ-adic sheaves on the
small étale site of - . In fact, as explained in [CD16, Prop. 7.2.21] (although in the
language of model categories), the rigidity theorem 1.4.4 may be interpreted as an
equivalence of∞-categories of the form:

�̂ (-,Zℓ) � lim
=
� (-4C ,Z/ℓ=Z)

(here, the limit is taken in the∞-categories of∞-categories). We thus have a canon-
ical ℓ-adic realization functor

'ℓ : DM ℎ (-,Z) → lim
=
� (-4C ,Z/ℓ=Z)

which sends a motive " to " ⊗ Z(ℓ) , seen in the Verdier quotient �̂ (-,Zℓ). We
observe that there is a unique way to define the six operations on �̂ (-,Zℓ) in such
a way that the ℓ-adic realization functor commutes with them. In particular, there is
a symmetric monoidal structure on �̂ (-,Zℓ).

Classically, one defines�12 (-4C ,Zℓ) as the full subcategory of lim= � (-4C ,Z/ℓ=Z)
whose objects are the ℓ-adic systems (F=) such that each F= belongs to the subcate-
gory�1

2C 5
(-4C ,Z/ℓ=Z) (see 2.1.4). Furthermore, an ℓ-adic system (F=) is dualizable

is and only if F1 is dualizable in �1
2C 5
(-4C ,Z/ℓZ): this is due to the fact, that, by

definition, the canonical functor

�̂ (-,Zℓ) → � (-4C ,Z/ℓZ)

is symmetric monoidal, conservative, and commutes with the formation of internal
Hom’s. In other words, �12 (-4C ,Zℓ) may be identified with the full subcategory of
�̂ (-,Zℓ) whose objects are those F such that there exists a finite stratification by
locally closed subschemes -8 ⊂ - such that each restriction F |-8 is dualizable in
�̂ (-8 ,Zℓ). We thus have a canonical equivalence of∞-categories:
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�12 (-4C ,Zℓ) � lim
=
�12C 5 (-4C ,Z/ℓ

=Z) .

This implies right away that the six operations restrict to �12 (-4C ,Zℓ) (if we consider
quasi-excellent schemes only), and, by vitue of Theorem2.1.14 that we have an ℓ-adic
realization functor

'ℓ : DM ℎ,;2 (-,Z) → �12 (-4C ,Zℓ)

which commute with the six operations. For a scheme - with structural map 0 :
- → Spec(:) separated and of finite type, the motive of - is " (-) = 0!0! (Z). This
is a dualizable object with dual 0∗ (Z). Hence

'ℓ (" (-)∧ (=)) = 0∗ (Zℓ (=)) = 'Γ(-4C ,Zℓ (=))

is a dualizable object in �12 (Spec(:)4C ,Zℓ). For : separably closed, the latter cate-
gory simply is the bounded derived category of Zℓ-modules of finite type, and this
proves in particular that ℓ-adic cohomology

�84C (-,Zℓ (=)) = �8 ('ℓ (" (-)∧ (=)))

is of finite type as a Zℓ-module for all 8 (and trivial for all but finitely many 8’s).
Similarly, the ℓ-adic realization of 0! (Z) gives ℓ-adic cohomology with compact
support

�84C ,2 (-,Zℓ (=)) = �8 ('ℓ (0! (Z) (=))) .

2.2.4 In particular, for any field : of characteristic prime to ℓ, we have a symmetric
monoidal functor

'ℓ : �"ℎ,;2 (:,Z) → �12 (:,Zℓ)

inducing the map of rings

'ℓ : Z[1/?] � �0HomDM ℎ,;2 (:,Z) (Z,Z) → �0Hom�12 (:,Zℓ ) (Zℓ ,Zℓ) � Zℓ .

Therefore, for an endomorphism 5 : " → " we have )A ( 5 ) ∈ Z[1/?] sent to the
ℓ-adic number )A ('ℓ ( 5 )) ∈ Zℓ . We thus get:

Corollary 2.2.5 The ℓ-adic trace )A ('ℓ ( 5 )) ∈ Z[1/?] and is independent of ℓ.

Remark 2.2.6 If : is separably closed, then �12 (:,Zℓ) simply is the derived category
of Zℓ-modules of finite type, and we have

)A ('ℓ ( 5 )) =
∑
8

(−1)8)A (�8'ℓ ( 5 ) : �8'ℓ (") → �8'ℓ ("))

where each )A (�8'ℓ ( 5 )) can be computed in the usual way in terms of traces of
matrices. If : is not separably closed, we can always choose a separable closure :̄
and observe that pulling back along the map (?42( :̄) → (?42(:) is a symmetric
monoidal functor which commutes with the ℓ-adic realization functor. This can
actually be used to prove that the Euler characteristic is always an integer (as opposed
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to a rational number in Z[1/?]): if 5 = 1" is the identity, the trace of 'ℓ ( 5 ) can be
computed as an alternating sum of ranks of Zℓ-modules of finite type.

Corollary 2.2.7 For any dualizable object " in DM ℎ (:,Z), we have j(") ∈ Z.

2.2.8 Let � be a ring. A function 5 : - → � from a topological space to a ring
is constructible if there is a finite stratification of - by locally closed -8 such that
each 5 |-8 is constant. We denote by � (-, �) the ring of constructible functions
with values in � on - . For a scheme - , we define � (-, �) = � ( |- |, �), where |- |
denotes the topological space underlying - .

2.2.9 Recall that, for a stable∞-category�, we have its Grothendieck group  0 (�):
the free monoid generated by isomorphism classes [G] of objects G of �, modulo the
relations [G] = [G ′] + [G ′′] for each cofiber sequence G ′ → G → G ′′. In particular,
we have the relations 0 = [0] and [G] + [~] = [G ⊕ ~]. This monoid turns out to be
an abelian group with −[G] = [Σ(G)]. If ever � is symmetric monoidal, then  0 (�)
inherits a commutative ring structure with multiplication [G] [~] = [G ⊗ ~].

2.2.10 We have the Euler characteristic map �"ℎ,;2 (-,Z)
j
→ � (-,Z). It is defined

by j(") (G) = j(G∗"), where the point G is seen as a map G : (?42(^(G)) → - .
Recall that if " ∈ �"ℎ (-,Λ) is locally constructible then there is* ⊆ - open and
dense such that" |(-−* )A43 is locally constructible and" |* is dualizable. Therefore,
by noetherian induction, we see that j(") : |- | → Z is a constructible function
indeed. For any cofiber sequence of dualizable objects

" ′→ " → " ′′ ,

we have
j(") = j(" ′) + j(" ′′) .

Since j(" ⊗ #) = j(")j(#), we have a morphism of rings:

j :  0 (�"ℎ,;2 (-,Z)) → � (-,Z) ,

and we have a commutative triangle:

 0 (DM ℎ,;2 (-,Z))  0 (�12 (-4C ,Zℓ))

� (-,Z)

'ℓ

j j

2.2.11 Given a stable ∞-category �, there is the full subcategory �C>AB which
consists of objects G such that there exists an integer = such that =.1G � 0. One
checks that �C>AB is a thick subcategory of � and one defines the Verdier quotient
� ⊗ Q = �/�C>AB . All this is a fancy way to say that one defines � ⊗ Q as the
∞-category with the same set of objects as �, such that c0"0?� (G, ~) ⊗ Q =

c0"0?�⊗Q (G, ~) for all G and ~. This is how one defines ℓ-adic sheaves:
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�12 (-4C ,Qℓ) = �12 (-4C ,Zℓ) ⊗ Q .

When it comes to motives, we can prove that, when - is noetherian of finite dimen-
sion, the canonical functor

DM ℎ,;2 (-,Z) ⊗ Q→ DM ℎ,;2 (-,Q)

is fully faithful and almost an equivalence: aMorita equivalence. SinceDM ℎ,;2 (-,Q)
is idempotent complete, that means that any Q-linear locally constructible motive is
a direct factor of a Z-linear one. Furthermore, one checks that �12 (-4C ,Qℓ) is idem-
potent complete (because it has a bounded C-structure), so that we get a Q-linear
ℓ-adic realization functor:

'ℓ : DM ℎ,;2 (-,Q) → �12 (-4C ,Qℓ)

which is completely determined by the fact that the following square commutes.

DM ℎ,;2 (-,Z) �12 (-4C ,Zℓ)

DM ℎ,;2 (-,Q) �12 (-4C ,Qℓ)

'ℓ

'ℓ

The Q-linear ℓ-adic realization functor commutes with the six operations if we
restrict ourselves to quasi-excellent schemes over Z[1/ℓ]; see [CD16, 7.2.24].

We may see these realization functors as a categorified version of cycle class
maps. Indeed, in view of the representability results such as Theorem 1.4.3 , they
induce the classical cycle class maps in ℓ-adic cohomomology: for a field : and a
separated morphism of finite type 0 : - → Spec(:), we have

�0 (Hom�"ℎ (-,Q) (Q(=) [2=], 0!Q)) �0 (Hom�12 (-4C ,Qℓ ) (Qℓ (=) [2=], 0
!Qℓ))

��= (-) ⊗ Q �2=
2 (-4C ,Qℓ (=))∧

o

'ℓ

o

If - is regular (e.g. smooth) this gives by Poincaré duality the cycle class map:

��= (-) → �2= (-4C ,Qℓ (=)) .

One can lift these cycle class maps to integral coefficients using similar arguments
from 23ℎ-motives; see [CD15].

Theorem 2.2.12 There is a canonical exact sequence of the form:

 0 (DM ℎ,;2 (-,Z)C>AB) →  0 (DM ℎ,;2 (-,Z)) →  0 (DM ℎ,;2 (-,Q)) → 0 .
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Proof Let DM ℎ (-,Z) ′ be the smallest localizing subcategory of DM ℎ (-,Z) gen-
erated by DM ℎ,;2 (-,Z)C>AB . We also define � (-4C ,Z) ′ as the smallest localizing
subcateory of � (-4C ,Z) generated by objects of the form 9! (F), where 9 : * → -

is a dense open immersion and F is bounded with constructible cohomology sheaf,
such that there is a prime ? with the following two properties:

• ?.1F = 0;
• ? is invertible in O* .

Then a variant of the rigidity theorem 1.4.4 (together with remark 1.4.5) gives an
equivalence of∞-categories:

DM ℎ (-,Z) ′ � � (-4C ,Z) ′ .

One then checks that the C-structure on � (-4C ,Z) ′ induces a bounded C-structure
on DM ℎ,;2 (-,Z)C>AB (with noetherian heart, since we get a Serre subcategory of
constructible étale sheaves of abelian groups on -4C ). Using the basic properties
of non-connective  -theory [Sch06, CT11, BGT13], we see that we have an exact
sequence

 0 (DM ;2 (-)C>AB) →  0 (DM ;2 (-)) →  0 (DM ;2 (-)Q) →  −1 (DM ;2 (-)C>AB) ,

where DM ;2 (-) = DM ℎ,;2 (-,Z) and DM ;2 (-)Q = DM ℎ,;2 (-,Q). By virtue of
a theorem of Antieau, Gepner and Heller [AGH19], the existence of a bounded
C-structure with noetherian heart implies that  −8 (DM ℎ,;2 (-,Z)C>AB) = 0 for all
8 > 0. �

Here is a rather concrete consequence (since j(") = 0 for " inDM ℎ,;2 (-,Z)C>AB).

Corollary 2.2.13 For any " in DM ℎ,;2 (-,Q), there exists "0 in DM ℎ,;2 (-,Z),
such that, for any point G in - , we have j(G∗") = j(G∗"0).

Remark 2.2.14 It is conjectured that there is a (nice) bounded C-structure on
DM ℎ,;2 (-,Q). Since DM ℎ,;2 (-,Z)C>AB) has a bounded C-structure, this would im-
ply the existence of a bounded C-structure on DM ℎ,;2 (-,Z), which, in turns would
imply the vanishing of  −1 (DM ℎ,;2 (-,Z)) (see [AGH19]). Such a vanishing would
mean that all Verdier quotients of DM ℎ,;2 (-,Z) would be idempotent-complete
(see [Sch06, Remark 1 p. 103]). In particular, we would have an equivalence of
∞-categories DM ℎ,;2 (-,Z) ⊗ Q = DM ℎ,;2 (-,Q). The previous proposition is a
virtual approximation of this expected equivalence.

2.2.15 Let ' be a ring and let , (') = 1 + '[[C]] the set of power series with
coefficients in ' and leading term equal to 1. It has an abelian group structure
defined by the multiplication of power series. And it has a unique multiplication ∗
such that (1 + 0C) ∗ (1 + 1C) = 1 + 01C, turning , (') into a commutative ring: the
ring of Witt vectors. We also have the subset, (')A0C ⊆ , (') of rational functions,
which one can prove to be a subring. Given a (stable)∞-category �, we define

�N = {objects of � equipped with an endomorphism} .
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This is again a stable ∞-category. For � = %4A 5 (') the ∞-category of perfect
complexes on the ring ', we have an exact sequence

0→  0 (%4A 5 (')) →  0 (%4A 5 (')N)→, (')A0C → 0

where the first map sends a perfect complex of '-modules " to the class of "
equipped with the zero map 0 : " → " , while the second maps sends 5 : " → "

to det(1 − C 5 ) (it is sufficient to check that these maps are well defined when " is
a projective module of finite type, since these generate the  -groups); see [Alm78].
The first map identifies  0 (') with an ideal of  0 (%4A 5 (')N) so that we really get
an isomorphism of commutative rings:

 0 (%4A 5 (')N)/ 0 (%4A 5 (')) � , (')A0C .

2.2.16 Let : be a field with a given algebraic closure :̄ , as well as prime number ℓ
which is distinct from the characteristic of : . We observe that �12 ( :̄ ,Qℓ) simply is
the bounded derived category of complexes of finite dimensional Qℓ-vector spaces.
We thus have a symmetric monoidal realization functor

DM ℎ,;2 (:,Q) → �12 (:,Qℓ) → �12 ( :̄ ,Qℓ) � %4A 5 (Qℓ) .

This induces a functor

�"ℎ,;2 (:,Q)N → %4A 5 (Qℓ)N ,

and thus a map
 0 (�"ℎ,;2 (:,Q)N) →  0 (%4A 5 (Qℓ)N)

inducing a ring homomorphism, the ℓ-adic Zeta function

/ℓ :  0 (�"ℎ,;2 (:,Q)N)/ 0 (�"ℎ,;2 (:,Q)) → , (Qℓ)A0C ⊆ 1 +Q
ℓ
[[C]] .

On the other hand, for an endomorphism 5 : " → " inDM ℎ,;2 (-,Q), one defines
its motivic Zeta function as follows

/ (", 5 ) = exp
( ∑
=≥1

)A ( 5 =) C
=

=

)
∈ 1 +Q[[C]] .

Basic linear algebra show that / (", 5 ) = /ℓ (", 5 ) (see [Alm78]). In particular, we
see that the ℓ-adic Zeta function /ℓ (", 5 ) has rational coefficients and is independent
of ℓ, while the motivic Zeta function / (", 5 ) is rational. In other words, we get a
morphism of rings

/ :  0 (�"ℎ,;2 (-,Q)N)/ 0 (�"ℎ,;2 (-,Q)) → , (Q)A0C ⊂ , (Q) .

Concretely, if there is a cofiber sequence of motivic sheaves equipped with endo-
morphisms in the stable∞-category �"ℎ,;2 (-,Q)N
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(" ′, 5 ′) → (", 5 ) → (" ′′, 5 ′′) ,

then
/ (", 5 ) (C) = / (" ′, 5 ′) (C) · / (" ′′, 5 ′′) (C)

holds inQ[[C]]. And for two motivic sheaves equipped with endomorphisms (", 5 )
and (" ′, 5 ′) in �"ℎ,;2 (-,Q)N, there is

/ (" ⊗ " ′, 5 ⊗ 5 ′) = / (", 5 ) ∗ / (" ′, 5 ′)

where ∗ denotes the multiplication in the big ring of Witt vectors, (Q).

2.2.17 Take : = F@ a finite field and let "0 ∈ �"ℎ,;2 (:,Q), with " = ?∗"0,
? : B?42( :̄) → B?42(:). Let � : " → " be the induced Frobenius. We define the
Riemann-Weil Zeta function of "0 as:

Z ("0, B) = / (", �) (C), C = ?−B .

The fact that the assignment / (−, �) defines a morphism of rings with values in
, (Q) can be used to compute explicitely the Zeta function of many basic schemes
such as P= of (G<)A ; see [Ram15, Remark 2.2] for instance.

2.3 Grothendieck-Verdier duality

2.3.1 Take ( be a quasi-excellent regular scheme. We choose a ⊗-invertible object
�( in �"ℎ ((,Λ) (e.g. �( = Z(3) [23], where 3 is the Krull dimension of (). For
0 : - → ( separated of finite type, we define �- = 0!�( .

Define D- : �"ℎ (-,Λ)op → �"ℎ (-,Λ) by

D- (") = Hom (", �- ).

We will sometimes write D(") = D- (").

Theorem 2.3.2 For " a locally constructible motivic sheaf over - , the canonical
map " → D-D- (") is an equivalence.

There is a proof in the literature under the additional assumption that ( is of finite
type over an excellent scheme of dimension ≤ 2 (see [CD19, CD16]). But there is
in fact a proof which avoids this extra hypothesis using higher categories. Here is a
sketch.

Proof The formation of the Verdier dual is compatible with pulling back along an
étale map. We may thus assume that " is constructible. The full subcategory of
those "’s such that the biduality map of the theorem is invertible is thick. Therefore,
we may assume that " = " (*) for some smooth --scheme *. In particular, we
may assume that " = Λ ⊗ Σ∞Z(*). It is thus sufficient to prove the case where
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Λ = Z. By standard arguments, we see that is is sufficient to prove the case where
Λ is finite or Λ = Q. Such duality theorem is a result of Gabber [ILO14] for the
derived category of sheaves on the small étale site of - with coefficients in Λ of
positive characteristic with = invertible in O- . By Theorem 1.4.4 and Remark 1.4.5,
this settles the case where Λ is finite. It remains to prove the case where Λ = Q. We
will first prove the following statement. For each separated morphism of finite type
0 : - → (, and each integer =, the natural map

HomDM ℎ (-,Q) (Q,Q(=)) → HomDM ℎ (-,Q) (�- , �- (=))

is invertible in � (Q) (this is the map obtained by applying the global section functor
Hom(Q,−) to the unit map Q → Hom (�- , �- )). We observe that we may see this
map as a morphism of presheaves of complexes of Q-vector spaces

� → �

where � (-) = HomDM ℎ (-,Q) (Q,Q(=)) and � (-) = HomDM ℎ (-,Q) (�- , �- (=)).
For a morphism of (-schemes 5 : - → . , the induced map � (. ) → � (-) is
induced by the functor 5 ∗, while the induced map � (. ) → � (-) is induced by
the functor 5 ! (and the fact that 5 ! (�. ) � �- ).5 Now, we observe that both � and
� are in fact ℎ-sheaves of complexes of Q-vector spaces. Indeed, using [CD19,
Proposition 3.3.4], we see that � and � satisfy Nisnevich excision and thus are
Nisnevich sheaves. On the other hand, one can also characterise ℎ-descent for Q-
linear Nisnevich sheaves by suitable excision properties [CD19, Theorem 3.3.24].
Such properties for � and � follow right away from [CD19, Theorem 14.3.7 and
Remark 14.3.38], which proves the property of ℎ-descent for � and �. By virtue of
Theorem 2.1.10, it is sufficient to prove that � (-) � � (-) for - regular and affine.
In particular, 0 : - → ( factors through a closed immersion 8 : - → A= × (. By
relative purity, we have

�A=×( � ?
∗ (�() (=) [2=]

and thus �A=×( is ⊗-invertible (where ? : A= × ( → ( is the second projection).
This implies that

�- � 8
! (�A=×() � 8! (Q) ⊗ 8∗ (�A=×()

(Hint: use the fact that 8!Hom (�, �) � Hom (8∗�, 8!�)). By Absolute Purity, we
have 8!Q � Q(−2) [−22], where 2 is the codimenion of 8. In particular, the object �-
is ⊗-invertible, and thus the unit map Q→ Hom (�- , �- ) is invertible. This implies
that the map � (-) → � (-) is invertible as well.

We will now prove that the unit map

Q→ Hom (�- , �- )

5 This is where ∞-category theory appears seriously: proving that the construction 5 ↦→ 5 !

actually defines a presheaf is a highly non-trivial homotopy coherence proplem. Such construction
is explained in [Rob14, Chapter 10], using the general results of [LZ15, LZ17].
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is invertible inDM ℎ (-,Q) for any separated (-scheme of finite type - . Equivalently,
we have to prove that, for any smooth --scheme * and any integer =, the induced
map

HomDM ℎ (-,Q) (" (*),Q(=)) → HomDM ℎ (-,Q) (" (*),Hom (�- , �- ) (=))

is invertible in � (Q). But we have

Hom( 5♯Q,Q(=)) � Hom(Q,Q(=)) = � (*)

with a smooth structural map 5 : * → - , and

Hom( 5♯Q,Hom (�- , �- ) (=)) � Hom(Q, 5 ∗Hom (�- , �- ) (=))
� Hom(Q,Hom ( 5 ∗�- , 5 ∗�- ) (=))
� Hom(Q,Hom ( 5 !�- (−3) [−23], 5 !�- (−3) [−23]) (=))
� Hom(Q,Hom ( 5 !�- , 5 !�- ) (=))
� Hom(Q,Hom (�* , �* ) (=)) = � (*) .

In other words, we just have to check that the map � (*) → � (*) is invertible,
which we already know.

Finally, we can prove that the canonical map " → D-D- (") is invertible. As
already explained at the beginning of the proof, it is sufficient to prove this when
" is constructible. By virtue of Proposition 2.1.7, it is sufficient to prove the case
where " = 5∗ (Q), for 5 : . → - a proper map. We have:

D- 5∗Q = Hom ( 5∗Q, �- )
� 5∗Hom (Q, 5 !�- )
� 5∗ 5

!�-

� 5∗�. .

Therefore, we have

D-D- (") � D- 5∗�.

� Hom ( 5∗�. , �- )
� 5∗Hom (�. , 5 !�- )
� 5∗Hom (�. , �. )
� 5∗Q = " ,

and this ends the proof. �

Corollary 2.3.3 For locally constructible motives and 5 a morphism between sepa-
rated (-schemes of finite type, we have:
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D 5∗ � 5!D

D 5! � 5∗D

D 5 ! � 5 ∗D

D 5 ∗ � 5 !D .

(The proof is by showing tautologically the second one and the fourth one, and then
deduce the other two using that D is an involution.)

Proposition 2.3.4 For any " and # in DM ℎ (-,Λ), if # is locally constructible,
then

D(" ⊗ D#) � Hom (", #) .

Proof We construct a canonical comparison morphism:

Hom (", #) → D(" ⊗ D#) .

By transposition, it corresponds to a map

" ⊗ Hom (", #) ⊗ D(#) → �- .

Such a map is induced by the evaluation maps

" ⊗ Hom (", #) → # and # ⊗ D(#) → �- .

For # fixed, the class of "’s such that this map is invertible is closed under colimits.
Therefore, we reduce the question to the case where " = 5♯Λ for 5 : - → ( a
smooth map of dimension 3. In that case, we have

Hom (", #) � 5∗ 5
∗ (#),

while

D(" ⊗ D#) � D( 5! 5 ∗ (Λ(−3) [−23]) ⊗ D#)
� D( 5! 5 ∗ (Λ) ⊗ D#) (3) [23]
� D( 5! 5 ∗ (D#)) (3) [23]
� 5∗ 5

! (DD#) (3) [23]
� 5∗ 5

∗# ,

which ends the proof. �

Corollary 2.3.5 For " and # locally constructible on - , we have:

" ⊗ # � DHom (",D#) .
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2.4 Generic base change: a motivic variation on Deligne’s proof

2.4.1 The following statement, is a motivic analogue of Deligne’s generic base
change theorem for torsion étale sheaves [Del77, Th. Finitude, 1.9]. The proof
follows essentially the same pattern as Deligne’s original argument, except that
locally constant sheaves are replaced by dualizable objects, as we will explain below.
We will write DM ℎ (-) = DM ℎ (-,Λ) for some fixed choice of coefficient ring Λ.

Theorem 2.4.2 (Motivic generic base change formula) Let 5 : - → . be a
morphism between separated schemes of finite type over a noetherian base scheme
(. Let " be a locally constructible ℎ-motive on - . Then there is a dense subscheme
* ⊂ ( such that the formation of 5∗ (") is compatible with any base-change which
factors through*. Namely, for each | : (′→ ( factoring through* we have

{∗ 5∗" � 5 ′∗D
∗"

where
- ′ -

. ′ .

(′ (

D

5 ′ 5

{

|

is the associated pull-back diagram.

Remark 2.4.3 The motivic generic base change formula is also a kind of indepen-
dence of ℓ result for each prime ℓ so that the ℓ-adic realization is defined, the
formation of 5∗'ℓ (") � 'ℓ ( 5∗") is compatible with any base change over* ⊂ (,
where* is a dense open subscheme which is given independently of ℓ.

The first step in the proof of Theorem 2.4.2 is to find sufficient conditions for the
formation a direct image to be compatible with arbitrary base change.

Proposition 2.4.4 Let 5 : - → ( be a smooth morphism of finite type between
noetherian schemes, and let us consider a locally constructible ℎ-motive " over - .
Assume that " is dualizable in DM ℎ,;2 (-) and that the direct image with compact
support of its dual 5! ("∧) is dualizable as well in DM ℎ,;2 ((). Then 5∗ (") is
dualizable (in particular, locally constructible), and, for any pullback square of the
form

- ′ -

(′ (

D

5 ′ 5

{

the morphism 5 ′ is smooth, the pullback D∗ (") is dualizable, so is 5 ′
!
(D∗ (")∧), and,

furthermore, the canonical base change map {∗ 5∗ (") → 5 ′∗D
∗ (") is invertible.
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Proof If 3 denotes the relative dimension of - over ( (seen as a locally constant
function over (), we have:

5∗ (") ' 5∗Hom ("∧,Λ)
' 5∗Hom ("∧, 5 !Λ) (−3) [−23]
' Hom ( 5! ("∧),Λ) (−3) [−23]
' ( 5! ("∧))∧ (−3) [−23]

(where the dual of a dualizable object � is denoted by �∧). Remark that pullback
functors {∗ are symmetric monoidal and thus preserve dualizable objects as well as
the formation of their duals. Therefore, for any pullback square of the form

- ′ -

(′ (

D

5 ′ 5

{

we have that 5 ′ is smooth of relative dimension 3, that D∗ (") is dualizable with
dual D∗ (")∧ ' D∗ ("∧), and:

{∗ 5∗ (") ' {∗ ( 5! ("∧))∧ (−3) [−23]
' ({∗ 5! ("∧))∧ (−3) [−23]
' ( 5 ′! D

∗ ("∧))∧ (−3) [−23]
' ( 5 ′! (D

∗ (")∧))∧ (−3) [−23]

This also shows that 5 ′
!
(D∗ (")∧) is dualizable and thus that there is a canonical

isomorphism
( 5 ′! (D

∗ (")∧))∧ (−3) [−23] ' 5 ′∗ (D∗ (")) .

We deduce right away from there that the canonical base change map {∗ 5∗ (") →
5 ′∗ (D∗ (")) is invertible. �

Remark 2.4.5 In the preceding proposition, we did not use any particular property
of DM ℎ,;2: the statement and its proof hold in any context in which we have the six
operations (more precisely, we mainly used the relative purity theorem as well as the
proper base change theorem).

In order to prove Theorem 2.4.2 in general, we need to verify the following
property of ℎ-motives.

Proposition 2.4.6 Let ( be a noetherian scheme of finite dimension, and 5 : . → (

a quasi-finite morphism of finite type. The functors 5! : DM ℎ (-) → DM ℎ (() and
5∗ : DM ℎ (-) → DM ℎ (() are conservative.

Proof If 5 is an immersion, then 5! and 5∗ are fully faithful, hence conservative.
Since the composition of two conservative functors is conservative, Zariski’s Main
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Theorem implies that it is sufficient to prove the case where 5 is finite. In this case,
since the formation of 5! ' 5∗ commutes with base change along any map (′ → (,
by noetherian induction, it is sufficient to prove this assertion after restricting to
a dense open subscheme of ( of our choice. Since, for ℎ-motives, pulling back
along a surjective étale morphism is conservative, we may even replace ( by an
étale neighbourhood of its generic points. For 5 surjective and radicial, [CD16,
Proposition 6.3.16] ensures that 5! is an equivalence of categories. We may thus
assume that 5 also is étale. If ever - = - ′ q - ′′, and if 5 ′ and 5 ′′ are the restriction
of 5 to - ′ and - ′′, respectively, then we have DM ℎ (-) ' DM ℎ (- ′) ×DM ℎ (- ′′),
and the functor 5! decomposes into

5! (") = 5 ′! ("
′) ⊕ 5 ′′! ("

′′)

for " = (" ′, " ′′). Therefore, it is then sufficient to prove the proposition for 5 ′ and
5 ′′ separately. Replacing ( by an étale neighbourhood of its generic points, we may
thus assume that either - is empty, either 5 is an isomorphism, in which cases the
assertion is trivial. �

2.4.7 Let %(=) be the assertion that, whenever ( is integral and 5 : - → . is
a separated morphism of (-schemes of finite type, such that the dimension of the
generic fiber of - over ( is smaller than or equal to =, then, for any locally construtible
ℎ-motive " on - , there is a dense open subscheme * of ( such that the formation
of 5∗ (") is compatible with base change along maps (′→ * ⊂ (.

Fromnowon,we fix a separatedmorphismof (-schemes of finite type 5 : - → . ;
as well as a locally constructible ℎ-motive " on - .

Lemma 2.4.8 The property that there exists a dense open subscheme * ⊂ ( such
that the formation of 5∗ (") is stable under any base change alongmaps (′→ * ⊂ (
is local on . for the Zariski topology.

Proof Indeed, assume that there is an open covering . =
⋃
9 +8 such that, for each

9 , there is a dense open subset * 9 ⊂ * with the property that the formation of the
motive ( 5 −1 (+ 9 ) → + 9 )∗ (" 5 −1 (+9 ) ) is stable under any base change along maps of
the form (′→ * 9 ⊂ (. Since. is noetherian, wemay assume that there finitelymany
+ 9 ’s, so that * =

⋂
9 * 9 is a dense open subscheme of (. For any 9 , the formation

of ( 5 −1 (+ 9 ) → + 9 )∗ (" 5 −1 (+9 ) ) is stable under any base change along maps of
the form (′ → * ⊂ (. Since pulling back along open immersions commutes with
any push-forward, one deduces easily that the formation of 5∗ (") is stable under
any base change of the form ( 5 −1 (+ 9 ) → + 9 )∗ (" 5 −1 (+9 ) ) is stable under any base
change along maps of the form (′→ * ⊂ (. �

Lemma 2.4.9 Assume that there is a compactification of . : an open immersion
9 : . → .̄ with .̄ a proper (-scheme. If there is a dense open subscheme * such
that the formation of ( 9 5 )∗ (") is compatible with all base changes along maps
(′→ * ⊂ (, then the formation of 5∗ (") is compatible with all base changes along
maps (′→ * ⊂ (.
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Proof This follows right away from the fact that pulling back along 9 is compatible
with any base changes and from the fully faithfulness of the functor 9∗ (so that
9∗ 9∗ 5∗ (") ' 5∗ (")). �

Lemma 2.4.10 Assume that ( is integral, that the dimension of the generic fiber of
- over ( is = ≥ 0, and that %(= − 1) holds. If - is smooth over (, and if " is
dualizable, then there is a dense open subscheme of ( such that the formation of
5∗ (") is stable under base change along maps (′→ * ⊂ (.

Proof Since pulling back along open immersions commutes with any push-forward,
and since. is quasi-compact, the problem is local over. . Therefore, we may assume
that. is affine. Let us choose a closed embedding. ⊂ A3

(
determined by 3 functions

�8 : . → A1
(
, 1 ≤ 8 ≤ 3. For each index 8, we may apply %(=− 1) to 5 , seen as open

embedding of schemes overA1
(
through the structural map �8 . This provides a dense

open subscheme *8 in A1
(
such that the formation of 5∗ (") is compatible with any

base change of �8 along a map (′→ A1
(
which factors through*8 . Let+ be the union

of all the open subschemes �−1
8
(*8), 1 ≤ 8 ≤ 3, and let us write 9 : + → . for the

corresponding open immersion. Then the formation of 9! 9∗ 5∗ (") is compatible with
any base change (′ → (. Let us choose a closed complement 8 : ) → . to 9 . Then
) is finite: the reduced geometric fibers of )/( are traces on . of the subvarieties
of A3 determined by the vanishing of all the non constant polynomials ?8 (G8) = 0,
1 ≤ 8 ≤ 3, where ?8 (G) is a polynomial such that*8 = {?8 (G) ≠ 0}.

We may now consider the closure .̄ of. in P=
(
. Any complement of+ in .̄ is also

finite over a dense open subscheme of (: the image in ( of the complement of + in
+̄ is closed (since +̄ is proper over (), and does not contain the generic point (since
the generic fiber of - is not empty), so that we may replace ( by the complement
of this image. By virtue of Lemma 2.4.9, we may replace . by .̄ , so that we are
reduced to the following situation: the scheme . is proper over (, and there is a
dense open immersion 9 : + → . with the property that the formation of 9! 9∗ 5∗ (")
is compatible with any base change (′ → (, and that after shrinking (, there is a
closed complement C : ) → . of+ which is finite over (. We thus have the following
canonical cofiber sequence

9! 9
∗ 5∗ (") → 5∗ (") → 8∗8

∗ 5∗ (")

Let ? : . → ( be the structural map (which is now proper). We already know that
the formation of 9! 9∗ 5∗ (") is compatible with any base change of the form (′→ (.
Therefore, it is sufficient to prove that, possibly after shrinking (, the formation of
8∗8∗ 5∗ (") has the same property. Since 8! ' 8∗, this means that this is equivalent to the
property that, possibly after shrinking (, the formation of 8∗ 5∗ (") is compatible with
any base change of the form (′→ (. But the composed morphism ?8 being finite, by
virtue of Proposition 2.4.6, we are reduced to prove this property for ?∗8∗8∗ 5∗ (").
We then have the following canonical cofiber sequence

?∗ 9! 9
∗ 5∗ (") → (? 5 )∗ (") → (?8)∗8∗ 5∗ (")
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By virtue of Proposition 2.4.4, possibly after shrinking (, the formation of (? 5 )∗ (")
is compatible with any base change. Since ? is proper, we have the proper base
change formula (because ?! ' ?∗), and therefore, the formation of 9! 9∗ 5∗ (") being
compatible with any base change of the form (′→ (, the formation of ?∗ 9! 9∗ 5∗ (")
is also compatible with any base change (′ → (. One deduces that, possibly after
shrinking ( the fomration of (?8)∗8∗ 5∗ (") is also compatible with any base change
(′→ (. �

Proof of Theorem 2.4.2 We observe easily that it is sufficient to prove the case
where ( is integral. We shall prove %(=) by induction. The case = = −1 is clear. We
may thus assume that = ≥ 0 and that %(=− 1) holds true. Locally for the ℎ-topology,
radicial surjective and integral morphisms are isomorphisms; in particular, pulling
back along a radicial surjective and integral morphism is an equivalence of categories
which commutes with the six operations. There is a dense open subscheme * of
( and a finite radicial and surjective map * ′ → *, so that - ′ = - ×( * ′ has a
dense open subscheme which is smooth over* ′ (it is sufficent to prove this over the
spectrum of the field of functions of (, by standard limit arguments). Replacing (
by* ′ and - by - ′, we may thus assume, without loss of generality, that the smooth
locus of - over ( is a dense open subscheme.

Let 9 : + → - be a dense open immersion such that+ is smooth over (. Shrinking
+ , we may assume furthermore that " |+ is dualizable in DM ℎ (+). We choose a
closed complement 8 : / → - of + . With # = 8! ("), we then have the following
canonical cofiber sequence:

8∗ (#) → " → 9∗ 9
∗ (")

By virtue of Lemma 2.4.10, possibly after shrinking (, we may assume that the
formation of 9∗ (") is compatible with base changes along maps (′ → (. So is the
formation of 8∗ (#), since 8 is proper. Applying the functor 5∗ to the distinguished
triangle above, we obtain the following cofiber sequence:

( 5 8)∗ (#) → 5∗ (") → ( 5 9)∗ 9∗ (") .

We may apply Lemma 2.4.10 to 5 9 and " , and observe that %(= − 1) applies to
5 8 and # . Therefore, there exists a dense open subscheme * ⊂ ( such that the
formation of ( 5 8)∗ (#) and of ( 5 9)∗ 9∗ (") is compatible with any base change along
maps (′ → * ⊂ (. This implies that the formation of 5∗ (") is compatible with
such base changes as well. �
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3 Characteristic classes

3.1 Künneth Formula

3.1.1 Let : be a field. All schemes will be assumed to be separated of finite type
over : .

Theorem 3.1.2 Let 5 : - → . be a map of :-schemes, and ) a :-scheme. Consider
the square

) × - -

) × . .

?A2

1× 5 5

?A2

obtained bymultiplying 5 : - → . and) → (?42(:). Then ?A∗2 5∗ � (1× 5 )∗?A∗2
holds.

Proof Since, for a field : and ( = (?42(:), the only dense open subscheme of ( is
( itself, the generic base change formula gives that the canonical map ?A∗2 5∗ (") →
(1 × 5 )∗?A∗2 (") is an isomorphism for any locally constructible motive " on - .
Since we are comparing colimit preserving functors and since anymotive is a colimit
of locally constructible ones, this proves the theorem. �

Some consequences:

1. Take -,) to be :-schemes and ?A2 : ) × - → - the projection. Then, for any
" locally constructible on - we have:

?A∗2Hom (", #) � Hom (?A∗2", ?A∗2#) .

It is proved by producing a canonical map and then prove for a fixed # and reduce
to the case where " is a generator, namely " = 5♯Λ for smooth 5 . Then we get
Hom (", #) � 5∗ 5 ∗" .

2. For a morphism 5 : - → . consider the square below.

) × - -

) × . .

?A2

1× 5 5

?A2

Then ?A∗2 5
! � (1 × 5 )!?A∗2.

For the proof observe that this is a local problem so that we may assume 5 is quasi-
projective. The map 5 then has a factorization 5 = � ◦ 8 ◦ 9 where � is smooth, 8 is a
closed immersion, and 9 is an open immersion. Then 9∗ = 9 ! and �∗ = �! (−3) [−23]
so we reduce to the case where 5 is a closed immersion. Then 5∗ and (1 × 5 )∗ are
fully faithfull hence conservative. Therefore, it suffices to show
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(1 × 5 )∗?A∗2 5 ! � (1 × 5 )∗ (1 × 5 )!?A∗2 .

Since left hand side is isomorphic to

?A∗2 5∗ 5
! ,

weonly need to commute 5∗ 5 ! and ?A∗2. Nowobserve that 5∗ 5 ! (") � Hom ( 5∗Λ, ").
Sowe deduce the commutation of 5∗ 5 ! from the commutationwith internalHom and
5∗ (whichwe both know).Wefinally have proper basechange ?A∗2 5∗ (Λ) � (1× 5 )∗?A∗2
and this finishes the proof.

Remark 3.1.3 If 5 is smooth or " is ‘smooth’ (dualizable) then for all # we have

5 ∗Hom (", #) � Hom ( 5 ∗", 5 ∗#)

(see Remark 2.1.2).

3.1.4 For - a :-scheme and 0 : - → (?42(:) we define the dualizing sheaf to be
�- = 0

!Λ andD- = Hom (−, �- ). If -,. are schemes we can consider their product
- × . with projections ?- : - × . → - and ?. : - × . → . . If ", # are motivic
sheaves on -,. respectively, we can define

" � # := ?∗-" ⊗ ?∗. #

and then, recalling that � ⊗ � � DHom (�,D�), we get that

" � # � D(Hom (?∗-",D?∗. #)) � DHom (?∗-", ?!.D#)

and therefore
" �D# � DHom (?∗-", ?!. #)

Theorem 3.1.5 Let -,. be :-schemes and # locally constructible on . . Then
?!
.
# � �- � # .

Proof Let 0- and 0. be the structure maps of -,. to (?42(:). Then

?∗-0
!
- � ?

!
. 0
∗
. .

We have �- = 0!- (Λ) and ?∗- (�- ) � ?!- (Λ). Moreover:

?∗- (�- ) � ?∗- (D-Λ) � D-×. ?
!
-Λ � D-×. ?

∗
. (�. ) .

Then we have
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?∗- �- ⊗ ?∗. # � D?∗. �. ⊗ ?∗. #
� DHom (?∗. #, ?∗. �. )
� D?∗.Hom (#, �. )
� D?∗.D#

� ?!. #

Hence �- � # � ?!. # . �

Corollary 3.1.6 �- � �. � �-×. .

Proof �-×. � ?!. 0
!
.
Λ � ?!

.
�. � �- � �. . �

Proposition 3.1.7 (Künneth Formula with compact support) Let 5 : * → - and
� : + → . and let " ∈ �"ℎ (*,Λ) and # ∈ �"ℎ (+,Λ) then

5! (") � �! (#) � ( 5 × �)! (" � #).

Proof Since ( 5 × �)! � ( 5 × 1)! (1 × �)!, we see that it is sufficient to prove this
when 5 or � is the identity. Using the functorialities induced by permuting the factors
- × . � . × - , we see that it is sufficient to prove the case where � is the identity.
We then have a Cartesian square

* × . *

- × . -

?*

5 ×1 5

?-

inducing an isomorphism
( 5 × 1)!?∗* � ?∗- 5! .

The projection formula also gives

( 5 × 1)! (?∗* (")) ⊗ ?∗. (#) � ( 5 × 1)! (" � #)

so that we get 5! (") � # � ( 5 × 1)! (" � #). �

Corollary 3.1.8 For - = . weget 5! (")⊗�! (#) � c!8∗ ("�#) where c : *×-+ →
- is the canonical map, while 8 : * ×- + → * ×+ is the inclusion map.

Remark 3.1.9 For 5 , � proper we get 5∗" � 5∗# � ( 5 × �)∗ (" � #).

Theorem 3.1.10 For " ∈ �"ℎ,;2 (-,Λ) and # ∈ �"ℎ,;2 (.,Λ) we have

D(" � #) � D" �D# .

Proof We may assume that " = 5∗Λ and # = �∗Λ with 5 , � proper. Then
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D 5∗Λ �D�∗Λ � 5∗�* � �∗�+

� ( 5 × �)∗ (�* � �+ )
� ( 5 × �)∗�*×+
� D(( 5 × �)∗Λ)
� D( 5∗Λ � �∗Λ)
� D(" � #).

Hence D(" � #) � D" �D# . �

Corollary 3.1.11 D" �# � Hom (?∗
-
", ?!

.
#) for " and # locally constructible.

Corollary 3.1.12 (Künneth Formula in cohomology)
Let us consider 5 : * → - and � : + → . together with " ∈ �"ℎ (*,Λ) and

# ∈ �"ℎ (+,Λ). Then

5∗ (") � �∗ (#) � ( 5 × �)∗ (" � #).

Proof Functors of the form ?∗, for ? separated of finite type, commute with small
colimits: since they are exact, it is sufficient to prove that they commute with small
sums, which follows from [CD16, Prop. 5.5.10]. Therefore it is sufficient to prove this
when " and # are (locally) constructible. In this case, the series of isomorphisms

5∗ (") � �∗ (#) � DD( 5∗ (") � �∗ (#))
� D(D 5∗ (") �D�∗ (#))
� D( 5!D" � �!D#)
� D(( 5 × �)! (D" �D#))
� D(( 5 × �)! (D(" � #))
� DD(( 5 × �)∗ (" � #))
� ( 5 × �)∗ (" � #)

proves the claim. �

Remark 3.1.13 In the situation of the previous corollary, if - = . = (?42(:), then
also - × . = (?42(:), so that the exterior tensor product � in DM ℎ (- × .,Λ)
simply corresponds to the usual tensor product ⊗ on DM ℎ (:,Λ). We thus get a
Künneth formula of the form

(0* )∗ (") ⊗ (0+ )∗ (#) � (0* × 0+ )∗ (" � #) .

Corollary 3.1.14 Let us consider 5 : * → - and � : + → . , together with
" ∈ �"ℎ (-,Λ) and # ∈ �"ℎ (.,Λ). Then

5 ! (") � �! (#) � ( 5 × �)! (" � #).



38 Denis-Charles Cisinski

Proof For any separated morphism of finite type 0, the functor 0! commutes with
small colimits (since, they are exact, it is sufficient to prove that they commutes with
small sums, which is asserted by [CD16, Cor. 5.5.14]). It is thus sufficient to prove
this formula for constructible motivic sheaves. Using the fact that the Verdier duality
functorD exchanges ∗’s and !’s as well as Theorem 3.1.10, we see that it is sufficient
to prove the analogous formula obtained by considering functors of the form ( 5 ×�)∗
and 5 ∗, �∗, which is obvious. �

Corollary 3.1.15 Let - be a :-scheme together with ", # ∈ DM ℎ,;2 (-,Λ). If we
denote by Δ : - → - × - the diagonal map, then

Δ! (D" � #) � Hom (", #) .

We have indeed:

Δ! (D" � #) � DΔ∗D(D" � #)
� DΔ∗ (DD" �D#)
� D(" ⊗ D#)
� Hom (", #) .

Corollary 3.1.16 Let - and . be :-schemes. We consider �, " in DM ℎ (-,Λ) as
well as �, # in DM ℎ (.,Λ), with both � and � locally constructible. Then there is
a canonical isomorphism

Hom (�, ") �Hom (�, #) � Hom (� � �, " � #) .

Proof There is a canonical morphism

Hom (�, ") �Hom (�, #) → Hom (� � �, " � #)

which is compatible with pull-backs along étale maps. We may thus work étale
locally on - and . and assume that both � and � are constructible. The family of
motivic sheaves � and � for which this map is invertible being closed under colimits
and Tate twists, we may assume, without loss of generality, that � = 5! (Λ) and
� = �! (Λ) for two separated morphisms of finite type 5 : * → - and � : + → . .
We then get

Hom (�, ") �Hom (�, #) = Hom ( 5! (Λ), ") �Hom (�! (Λ), #)
� 5∗Hom (Λ, 5 ! (")) � �∗Hom (Λ, �! (#))
� 5∗ 5

! (") � �∗�! (#)
� ( 5 × �)∗ ( 5 × �)! (" � #)
� Hom (( 5 × �)! (Λ), " � #)
� Hom ( 5! (Λ) � �! (Λ), " � #) ,
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where the fourth identification comes from Künneth Formulas 3.1.12 and 3.1.14,
while the last one comes from Künneth Formula with compact support. �

3.2 Grothendieck-Lefschetz Formula.

As in the previous paragraph, we assume that a ground field : is given, and all
schemes are assumed to be separated of finite type over : .

Definition 3.2.1 Let - and . be schemes, together with " ∈ DM ℎ,;2 (-,Λ) and
# ∈ DM ℎ,;2 (.,Λ). A cohomological correspondence from (-, ") to (., #) is a
triple of the form (�, 2, U), where (�, 2) determines the commutative diagram

�

- × . .

-

22

21

2

?.

?-

together with a map U : 2∗1" → 2!2# in DM ℎ (�,Λ).

Remark 3.2.2 We have:

Hom (2∗1", 2!2#) � Hom (2∗?∗-", 2!?!. #) � 2!Hom (?∗-", ?!. #) � 2! (D"�#).

Therefore, one can see U as a map of the form

U : Λ→ 2! (D" � #) .

Remark 3.2.3 In the case where 22 is proper, a cohomological correspondence
induces a morphism in cohomology as follows. Let 0 : - → (?42(:) and
1 : . → (?42(:) be the structural maps. We e have 021 = 122 and a co-unit
map (22)∗2!2 (#) → # , whence a map:

0∗" → 0∗ (21)∗2∗1"
0∗ (21)∗U−−−−−−−→ 0∗ (21)∗2!2# � 1∗ (22)∗2!2# → 1∗# .

In particular, one can consider the trace of such an induced map. By duality, in
the case where 21 is proper, we get an induced map in cohomology with compact
support 1!# → 0!" .

3.2.4 We observe that cohomological correspondences can be multiplied: given
another cohomological correspondence (� ′, 2′, U′) from (- ′, " ′) to (. ′, # ′), we
define a new correspondence from (- × - ′, " � " ′) to (. × . ′, # � # ′) with

(�, 2, U) ⊗ (� ′, 2′, U′) = (� × � ′, 2 × 2′, U � U′)
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where U � U′ is defined using the functoriality of the � operation together with the
canonical Künneth isomorphisms seen in the previous paragraph:

Λ � Λ�Λ
U�U′−−−−→ 2! (D"�#)�2′ ! (D" ′�# ′) � (2×2′)! (D("�" ′)� (#�# ′)) .

3.2.5 Correspondences can also be composed. Let (�, 2, U) be a correspondence
from (-, ") to (., #) as above, and let (�, 3, V) be a correspondence from (., #)
to (/, %), with (�, 3) corresponding to a commutative diagram of the form below,
and V : Λ→ 3! (D# � %) a map in in DM ℎ (�,Λ).

�

. × / /

.

32

31

3

?/

?.

We form the following pullback square

� �

� .

_

` 31

22

as well as the commutative diagram

�

- × / /

-

42

41

4

?/

?-

in which 41 = 21` and 42 = 32_. We then form U � V:

Λ � Λ �Λ
U�V
−−−→ 2! (D" � #) � 3! (D# � %) � (2 × 3)! ((D" � #) � (D# � %)) .

Let 5 = 31_ = 22` : � → . be the canonical map, and Δ : . → . × . be the
diagonal. We have the following Cartesian square

� � × �

- × . × / - × . × . × /

(`,_)

i=(41 , 5 ,42) 2×3
1×Δ×1
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which induces an isomorphism (proper base change formula)

i! (`, _)∗ � (1 × Δ × 1)∗ (2 × 3)! .

In particular, it induces a canonical map

^ : (`, _)∗ (2 × 3)! → i! (1 × Δ × 1)∗

corresponding by adjunction to the composite

i! (`, _)∗ (2 × 3)! � (1 × Δ × 1)∗ (2 × 3)! (2 × 3)!
co-unit−−−−−→ (1 × Δ × 1)∗ .

Let c : - × . × / → - × / be the canonical projection. There is a canonical map

Y : (1 × Δ × 1)∗ (D" � # �D# � %) → c! (D" � %)

induced by the evaluation map

# ⊗ D# → �.

together with the canonical identifications coming from appropriate Künneth formu-
las:

(1 × Δ × 1)∗ (D" � (# �D#) � %) � D" � (# ⊗ D#) � %
D" � �. � % � c

! (D" � %) .

We observe that 4 = ci, so that 4! � i!c!.
Definition 3.2.6 With the notations above, composing (`, _)∗ (U � V) with the maps
^ and Y defines the map

V ◦ U : Λ � (`, _)∗Λ→ i!c! (D" � %) � 4! (D" � %) .

We define finally define the composition of the correspondences (�, 2, U) and
(�, 3, V) as

(�, 3, V) ◦ (�, 2, U) = (�, 4, V ◦ U) .
3.2.7 This composition is only well defined up to isomorphism (since some choice
of pull-back appears), but it is associative and unital up to isomorphism. The unit
cohomological correspondence of (-, ") is given by

1(-," ) = (-,Δ, 1" )

where Δ : - → - × - is the diagonal map and

1" : Λ→ Δ! (D" � ") � Hom (", ")

is the canonical unit map. In a suitable sense, this defines a symmetric monoidal
bicategory, where the tensor product is defined as
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(-, ") ⊗ (., #) = (- × ., " � #)

while the unit object if ((?42(:),Λ).
3.2.8 Tomake this a little bit more precise, wemust speak of the category of cohomo-
logical correspondences from (-, ") to (., #), in order to be able to express the fact
that all the contructions and all the coherence isomorphisms (expressing the associa-
tivity and so on) are functorial. If (�, 2, U) and (�, 3, V) both are correspondences
from (-, ") to (., #), a map

f : (�, 2, U) → (�, 3, V)

is a pair f = ( 5 , ℎ), where 5 : � → � is a proper morphism such that 35 = 2, while
ℎ is a homotopy

ℎ : 5! (U) � V

where 5! (U) is the map defined as

5! (U) : Λ
unit−−→ 5∗Λ

5∗U−−−→ 5∗2
! (D" � #) � 5∗ 5

!3! (D" � #) co-unit−−−−−→ 3! (D" � #).

This defines the symmetric monoidal bicategory MCorr (:) whose objects are the
pairs (-, ") formed of a :-scheme - equipped with a Λ-linear locally constructible
ℎ-motive " . In particular, for each pair of pairs (-, ") and (., #), there is the
category of cohomological correspondences from (-, ") to (., #), denoted by
MCorr (-, ";., #) (in this paragraph, unless we make it explicit otherwise, we
will only need the 1-category of such things, considering maps U as above in the
homotopy category of ℎ-motives).
Proposition 3.2.9 All the objects of MCorr (:) are dualizable. Moreover, the dual
of a pair (-, ") is (-,D").
Proof Let (-, "), (., #) and (/, %) be three objects ofMCorr (:). A cohomolog-
ical correspondence from (- × ., " � #) to (/, %) is determined by a morphism
of :-schemes 2 : � → - × . × / together with a map

U : Λ→ 2! (D(" � #) � %) .

A cohomological correspondence from (-, ") to (. × /,D# � %) is determined
by a morphism of :-schemes 2 : � → - × . × / together with a map

U : Λ→ 2! (D" � (D# � %)) .

The Künneth formula

D(" � #) � % � D" � (D# � %)

implies our assertion. �

3.2.10 Let - be a scheme and " a locally constructible ℎ-motive on - . We denote
by Δ : - → - × - the diagonal map. There is a transposed evaluation map
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4{C" : D" � " → Δ∗�-

which corresponds by adjunction to the classical evaluation map

Δ∗ (D" � ") � Hom (", �- ) ⊗ " → �- .

Definition 3.2.11 Let (�, 2, U) be a cohomological correspondence from (-, ") to
(., #). In the case (-, ") = (., #) we can form the following Cartesian square.

� �

- - × -

X

? 2

Δ

The scheme � is called the fixed locus of the correspondence (�, 2). The transposed
evaluation map of " induces by proper base change a map

2! (4{C" ) : 2! (D" � ") → 2!Δ∗�- � X∗?
!�- � X∗�� ,

and thus, by adjunction, a map

4{C",2 : X∗2! (D" � ") → �� .

The map U : Λ→ 2! (D" � ") finally induces a map

)A (U) : Λ � ?∗Λ→ ��

defined as the composition of X∗U with 4{C
",2

(modulo the identification X∗Λ � Λ).
The corresponding class

)A (U) ∈ �0HomDM ℎ (�,Λ) (Λ, �� )

is called the characteristic class of U.

Example 3.2.12 Let 5 : - → - be a morphism of schemes, and let " be a Λ-linear
locally constructible ℎ-motive on - , equipped with a map U : 5 ∗" → " . Then
(-, (1- , 5 ),DU) is a cohomological correspondence from (-,D") to itself, with

DU : 1∗-D" � D" → D 5 ∗" � 5 !D" .

If we form the Cartesian square

� -

- - × -

X

? (1- , 5 )
Δ
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we see that � is indeed the fixed locus of the morphism 5 . If Λ ⊂ Q, then he
associated characteristic class

)A (DU) ∈ �0Hom(Λ, �� ) ⊗ Q � ��0 (�) ⊗ Q

defines a 0-cycle on � (see Theorem 1.4.3). In the case where 5 only has isolated
fixed points, we have

��0 (�) ⊗ Q � ��0 (�A43) ⊗ Q � ⊕8∈���0 ((?42(:8)) ⊗ Q

where � is a finite set and each :8 is a finite field extension of : with �A43 =∐
8 (?42(:8). Using this decomposition, one can then express the characteristic class

ofU as a sumof local terms: the contributions of each summand��0 ((?42(:8))⊗Q.
For instance, if * is an open subset of - such that 5 (*) ⊂ *, and if 9 : * → -

is the inclusion map, we can consider " = 9!Λ and the canonical isomorphism
U : 5 ∗ 9!Λ→ 9!Λ, in which case )A (U) is a way to count the number of fixed points
of 5 in* with ‘arithmetic multiplicities’ (in the form of 0-cycles).

Remark 3.2.13 The notation )A (U) is justified by Proposition 3.2.9: indeed, es-
sentially by definition of the composition law for cohomological correspondences
sketched in paragraph 3.2.6, the characteristic class )A (U) is the trace of the endo-
morphism (�, 2, U) of the dualizable object (-, "). Indeed, the endomorphisms of
((?42(:),Λ) in MCorr (:) are determined by pairs (�, C) where � is a :-scheme
and C : Λ→ �� is a section of the dualizing object of � in DM ℎ (�,Λ).

Corollary 3.2.14 For any cohomological correspondences (�, 2, U) and (�, 3, V)
from (-, ") to itself, we have:

)A (V ◦ U) = )A (U ◦ V) .

Corollary 3.2.15 Let (�, 2, U) be a cohomological correspondence from (-, ") to
itself. If we see U as a map from 2∗1" → 2!2" , it determines a map

DU : 2∗2D" � D2!2" → D2∗1" � 2
!
1D" .

If g : - × - → - × - denotes the permutation of factors, the cohomological
correspondence (�, g2,DU) from (-,D") to itself is the explicit description of the
map obtained from (�, 2, U) by duality. In particular:

)A (U) = )A (DU) .

3.2.16 The formation of traces is functorial with respect to morphisms of correspon-
dences. Let " be a locally constructible motive on a scheme - , and 5 : � → �,
3 : � → - × - , 2 = 35 , be morphisms, with 5 proper. We form pull-back squares
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� �

� �

- - × -

X

�

?

5

2
Y

@ 3

Δ

and have a composition

5∗2
! (D" � #) � 5∗ 5

!3! (D" � #) co-unit−−−−−→ 3! (D" � #)

as well as a composition

5∗X∗�� � Y∗�∗�� � Y∗�∗�
!��

co-unit−−−−−→ Y∗�� .

One then checks right away that the following square commutes.

5∗2! (D" � #) 3! (D" � #)

5∗X∗�� Y∗��

5∗2! (4{C" ) �∗3! (4{C" )

This implies immediately that, for any mapU : Λ→ 2! (D" � "), we have:

)A (U) = )A ( 5! (U)) .

3.2.17 Proper maps act on cohomological correspondences as follows. We consider
a proper morphism of geometric correspondences, by which wemean a commutative
square of the form

� �

- × - ′ . × . ′

i

2=(21 ,22) 3=(31 ,32)
5 × 5 ′

in which 5 : - → . , 5 ′ : - ′ → . ′ and i : � → � are proper map, together with
locally constructible ℎ-motives" on - and" ′ on - ′. Given a cohomological corre-
spondence from (-, ") to (- ′, " ′) of the form (�, 2, U), we have a cohomological
correspondence from (-, 5!") to (- ′, 5 ′! "

′)

( 5 , 5 ′)! (�, 2, U) = (�, 3i, ( 5 , 5 ′)! (U))

defined as follows. If, furthermore, the commutative square above is Cartesian, the
map ( 5 , 5 ′)! (U) is the induced map

Λ
unit−−→ i∗Λ

i∗U−−−→ i∗2
! (D" � " ′) � 3! ( 5 × 5 ′)∗ (D" � " ′) � 3! (D 5!" � 5 ′! "

′)
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Otherwise, we consider the induced proper map

� : � → � = - × - ′ ×.×. ′ �

and apply the preceding construction to �! (U), replacing � by � .
In the case where (-, ") = (- ′, " ′) and 5 = 5 ′, we simply write

5! (U) = ( 5 , 5 )! (U) .

Theorem 3.2.18 (Lefschetz-Verdier Formula) We consider a commutative square
of :-schemes of finite type of the form

� �

- × - . × .

i

2=(21 ,22) 3=(31 ,32)
5 × 5

in which both 5 and i are proper, as well as a locally constructible ℎ-motive " on
- , together with a map U : Λ → 2! (D" � "). Let � and � be the fixed locus of
(�, 2) and (�, 3) respectively. Then the induced map k : � → � is also proper,
and

k! ()A (U)) = )A ( 5! (U)) .

Proof The functoriality of the trace explained in 3.2.16 shows that it is sufficient to
prove the theorem in the case where the square is Cartesian. We check that the two
maps

( 5 × 5 )∗ (D" � ") � (D 5!" � 5!")
4{C
5!"−−−−→ Δ∗�.

and

( 5 × 5 )∗ (D" �")
( 5 × 5 )∗ (4{C" )−−−−−−−−−−−→ ( 5 × 5 )∗Δ∗�- � Δ∗ 5∗�- � Δ∗ 5! 5 !�.

co-unit−−−−−→ Δ∗�.

are equal (where we have denoted by the same symbol the diagonal of - and the
diagonal of . ). By duality, this amounts to check that the unit map

Δ∗Λ→ " �D"

is compatible with the push-forward 5∗. This is a fancy way to say that 5∗" has
a natural 5∗Λ-algebra structure, which comes from the fact that the functor 5 ∗ is
symmetric monoidal. The Lefschetz-Verdier Formula follows then right away. �

Remark 3.2.19 When Λ = Q, the operator k! coincides with the usual push-forward
of 0-cycles: seen as a map

k! : �0Hom(Λ, �� ) → �0Hom(Λ, ��) .

Theorem 3.2.20 (Additivity of Traces) Let 2 = (21, 22) : � → - × - be a
correspondence of :-schemes. We consider a cofiber sequence
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" ′→ " → " ′′

in DM ℎ,;2 (-) as well as maps

U′ : 2∗1"
′→ 2!2"

′ , U : 2∗1" → 2!2" , U′′ : 2∗1"
′′→ 2!2"

′′

in DM ℎ,;2 (�) so that the diagram below commutes (in the sense of∞-categories).

2∗1"
′ 2∗1" 2∗1"

′′

2!2"
′ 2!2" 2!2"

′′

U′ U U′′

Then the following formula holds.

)A (U) = )A (U′) + )A (U′′)

The proof is given in the paper of Jin and Yang [JY18, Theorem 4.2.8] using the
language of algebraic derivators, which is sufficient for our purpose (note however
that, by Balzin’s work [Bal19, Theorem 2], it is clear that one can go back and forth
between the language of fibred ∞-categories and the one of algebraic derivators).
The additivity of traces can be extended to more general homotopy colimits; see
Gallauer’s thesis [Gal14].

Remark 3.2.21 It is pleasant to observe that, when Λ = Q, this is the classical push-
forward of 0-cycles. Lefschetz-Verdier Formula is particularly relevant in the case
where. = (?42(:), and � consists of isolated points in - (in which case it is called
the Grothendieck-Lefschetz formula). Indeed, 5! (") is then the cohomology of -
with compact support with coefficients in" , so that)A ( 5! (U)) is the ordinary trace of
the endomorphism 5! (U) : 5! (") → 5! ("), which can be computed through ℓ-adic
realizations as an alternating sumof ordinary traces of linearmaps.On the other hand,
k! ()A (U)) is the sum of traces of the endomorphisms induced by U on each ?!G∗" ,
where G runs over the points of �, with ? : (?42(^(G)) → (?42(:) the structural
map. In the particular case discussed at the end of Example 3.2.12, this shows
that one can compute the number of fixed points with geometric multiplicities of a
endomorphism of a :-scheme 5 : - → - with isolated fixed points which extends
to an endomorphism of a compactification of - and whose graph is transverse to the
diagonal, using the trace of the induced endomorphism of the motive with compact
support of - . For the Frobenius map, such an extension is automatic, so that We can
count rational points of any separated F@-scheme of finite type -0 over a finite field
F@ with the Grothendieck-Lefschetz formula

#- (F@) =
∑
8

(−1)8 Tr
(
� : �82 (-,Qℓ) → �82 (-,Qℓ)

)
,

where - is the pull-back of -0 on the algebraic closure F@ , and where � is a the map
induced by the geometric Frobenius (i.e. where one considers the correspondence
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defined by the transposed graph of the arithmetic Frobenius). Indeed, using the
additivity of traces, it is in fact sufficient to prove this formula in the case where
- is smooth and projective, in which case the classical Lefschetz formula applies.
We will now prove a more general version of it: we will consider arbitrary (locally)
constructible motivic sheaves as coefficients.

3.2.22 Let ? be a prime number, A > 0 a natural number, and @ = ?A . Let :0 = F@
be the finite field with @ elements, and let us choose an algebraic closure : of :0.
Given a F?-scheme - , we denote by

�- : - → -

the absolute Frobenius of - , given by the identity on the underlying topological
space, and by 0 ↦→ 0? on the structural sheaf O- . The absolute Frobenius is a
natural transformation from the identity of the category of F?-schemes to itself.
In particular, for any morphism of :-schemes D : * → - , there is a commutative
square

* *

- -

�*

D D

�-

and thus a comparison map:

�*/- = (D, �* ) : * → �−1- (*) = - ×- *

called the relative Frobenius of* over - . In case -0 is a :0-scheme, the Ath iteration
of the absolute Frobenius

�A-0
: -0 → -0

is often called the @-absolute Frobenius of -0 (and has the feature of being a map of
:0-schemes). By base change to : , it induces the geometric Frobenius of - , i.e. the
morphism of :-schemes

qA : - → - ,

where - = Spec(:) ×Spec(:0) -0. Following Deligne’s conventions, sheaves (or
motives) on -0 will often be denoted by "0, and the pullback of "0 along the
canonical projection - → -0 will be written " . The map : → : , defined by
G ↦→ G@ is an automorphism of :0-algebras, which induces an isomorphism of
:0-schemes

Frob@ : Spec(:) → Spec(:) .

It induces an isomorphism of :0-schemes

Frob@,- = (Frob@ ×Spec(:0) 1-0 ) : - → -

whose composition with qA is nothing else than the absolute Frobenius of - . The
map

Frob−1@,- : - → -
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is often called the arithmetic Frobenius of - .

Lemma 3.2.23 Let - be a locally noetherian F?-scheme. The functor

�∗- : DM ℎ (-,Λ) → DM ℎ (-,Λ)

is the identity.

Proof Let 0 : - → Spec(F?) be the structural map. We have a commutative
diagram of the form

- -

Spec(F?) Spec(F?)

�-

0 0

in which the map �- is a universal homeomorphism (being integral, radicial and
surjective) and thus invertible locally for the ℎ-topology. In other words, the square
above is Cartesian locally for the ℎ-topology. By ℎ-descent, the functor

�∗- : DM ℎ (-,Λ) → DM ℎ (-,Λ)

thus acts as the identity. �

Remark 3.2.24 For a :0-scheme -0, since the composition of the geometric Frobe-
nius qA : - → - with the inverse of the arithmetic Frobenius is the absolute
Frobenius, this shows that considering actions of the geometric Frobenius or of the
arithmetic Frobenius amount to the same thing, at least as far as motivic sheaves are
concerned. In fact the previous lemma is also a way to define such actions.

Let "0 be a motivic sheaf on -0, i.e. an object of DM ℎ (-0,Λ). Since �- =

Frob@,- qA we have
�∗- (") = " ' q∗A Frob∗@,- (") .

On the other hand, since"0 is defined over :0, and" = 0∗ ("0), there is a canonical
isomorphism

Frob∗@,- (") � " .

Therefore, we have a canonical isomorphism

q∗A (") � " = (1- )! (") .

Since the locus of fixed points of qA is precisely the (finite) set - (:0) of rational
points of -0 (seen as a discrete algebraic variety over :), the Verdier trace of the
isomorphism above defines a class

! ("0) = Tr
(
q∗A (")

�−→ (1- )! (")
)
∈ �0 (- (:0),Λ) .

If ? is invertible in Λ, we have simply

�0 (- (:0),Λ) � Λ- (:0) .
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Under this identification, the obvious function

Λ- (:0) → Λ , 5 ↦→
∫

5 =
∑

G∈- (:0)
5 (G)

coincides with the operator

k! : �0 (- (:0),Λ) → �0 (Spec(:),Λ) = Λ

induced by the structural map k : - (:0) → Spec(:).
The action of Frobenius is functorial: for any map 5 : -0 → .0, the induced

action of q∗A on 5! (") via the proper base change isomorphism

q∗A 5! � 5!q
∗
A

coincides with the action defined as above in the case of 5! ("0). There is a similar
compatibility with the canonical isomorphism q∗A 5

∗ � 5 ∗q∗A .
If -0 is proper and if 9 : *0 → -0 is an open immersion, for any "0 locally

constructible inDM ℎ (*0,Q), we thus get, as a special case of the Lefschetz-Verdier
Formula (Theorem 3.2.18)

Tr
(
q∗A : 0! (") → 0! (")

)
=

∫
! ( 9!"0) ∈ Q

where 0 : * → Spec(:) is the structural morphism.

Theorem 3.2.25 (Grothendieck-Lefschetz Formula) Let 9 : *0 → -0 is an open
immersion into a proper scheme of finite type over a finite field :0 and let "0 be
a locally constructible motivic sheaf in DM ℎ (*0,Q). For each rational point G of
*0, we denote by "G the fiber of " at the induced geometric point of *, on which
there is a canonical action of the geometric Frobenius (as a particular case of the
construction of Remark 3.2.24). Then

Tr
(
q∗A : 0! (") → 0! (")

)
=

∑
G∈* (:0)

Tr
(
q∗A : "G → "G

)
.

Proof The case where "0 = Q is constant is well known (see Remark 3.2.21).
This proves the case where "0 = ?! (Q) for a map ? : .0 → *0. The case of a
direct factor of ?! (Q) with .0 smooth and projective can be proved in the same way:
the projector defining our motive is then given by some dim(. )-dimensional cycle
U on . × . supported on . ×- . (see Theorem 1.4.3). We then observe that the
Grothendieck-Lefschetz fixed point formula holds (using proper base change formula
and Olsson’s computation of local terms [Ols15, Prop. 5.5]). On the other hand, we
see that the shift [8] and the Tate twist (=) are compatible with traces (they consist
in multiplying by (−1)8 and by 1, respectively). By the additivity of traces, we are
comparing two numbers which only depend on the class of "0 in the Grothendieck
group  0 (DM ℎ,;2 (*0,Q)), and it is sufficient to consider the case where*0 = -0 is
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projective. Using Bondarko’s theory of motivic weights [Bon14, Prop. 3.3], we see
that any class in  0 (DM ℎ,;2 (*0,Q)) is a linear combination of classes of motives
which are direct factors of ?∗ (Q) (=) [8] for =, 8 ∈ Z and ? : .0 → *0 a projective
morphism, with .0 smooth and projective. This proves the formula in general. �

Remark 3.2.26 When "0 = ?! (Q), with ? : .0 → *0 separated of finite type,
the Grothendieck-Lefschetz Formula expresses the trace of the Frobenius action on
cohomology with compact support of . as a sum of the traces of the action of
Frobenius on cohomology with compact support of the fibers .G of . over each
:0-rational point G of *. One can do similar constructions replacing the geometric
Frobenius action by any (functorially given) automorphism of :-schemes, such as
the identity. The computation of the local terms given by the Lefschetz-Verdier Trace
Formula can then be rather involved. For instance, in the case of the identity (which
means that we want to compute Euler-Poincaré characteristic of cohomology with
compact support), the naive formula tends to fail (at least in positive characteristic).
The Grothendieck-Ogg-Shafarevitch Formula is such a non-trivial computation in
the case where "0 is dualizable on a smooth curve*0: it measures the deffect of the
naive formula in terms of Swan conductors.
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